The neurons that make up our brains and nervous systems mature slowly over many months. And while this may be beneficial from an evolutionary standpoint, the slow pace makes growing cells to study neurodegenerative and neurodevelopmental diseases -; like Parkinson's disease, Alzheimer's disease, and autism -; in the laboratory quite challenging.
Currently, nerve cells derived from human pluripotent stem cells take months to reach an adultlike state in the lab -; a timeline that mirrors the slow pace of human brain development. ("Pluripotent stem cells" have the potential to develop into many other kinds of cells.)
New research led by Memorial Sloan Kettering Cancer Center (MSK), however, has uncovered a way to "hack" the cells' internal clocks to speed up the process. And the work is shedding new light on how cells' developmental timetables are regulated.
"This slow pace of nerve cell development has been linked to humans' unique and complex cognitive abilities," saysLorenz Studer, MD, Director of MSK'sCenter for Stem Cell Biologyand the senior author of two recent studies published inNatureandNature Biotechnology."Previous research has suggested the presence of a 'clock' within cells that sets the pace of our neurons' development, but its biological nature had largely remained unknown -; until now."
Researchers, led by study first authorGabriele Ciceri, PhD, identified an epigenetic "barrier" in the stem cells that give rise to neural cells. ("Epigenetic changes" are ones that don't alter the DNA code.) This barrier acts as a brake on the development process and determines the rate at which the cells mature. By inhibiting the barrier, the scientists were able to speed up the neurons' development,they reported January 31 inNature.
While studying brain development in mice, I was struck by how neurons progress through a series of steps in a very precise schedule. But this schedule creates a big practical challenge when working with human neurons -; what takes hours and days in the mouse requires weeks and months in human cells."
Dr.Gabriele Ciceri,a senior research scientist in the Studer Lab at MSK'sSloan Kettering Institute
Furthermore, the team showed that this rate-setting epigenetic barrier is built into neural stem cells well before they differentiate into different types of neurons. They also found higher levels of the barrier in human neurons compared with mouse neurons, which may help explain differences in the pace of cell maturation in different species.
That such discoveries were made at a cancer center isn't as surprising as it might seem at first blush. The Studer Lab has long focused on harnessing advances in stem cell biology to develop new therapies for degenerative diseases and cancer -; both of which are strongly associated with aging.
Moreover,MSK has long been a leader in "basic science" research-; that is, science that seeks to build fundamental understanding of human biology.
About half of the National Institutes of Health (NIH) budget goes to funding basic science research. And the vast majority of drugs approved bythe Food and Drug Administration in recent years involved publicly funded basic research,according to the NIH.
"All of the major advances in cancer treatment in recent years -;immune checkpoint inhibitor therapy,CAR T cell therapy,cancer vaccines-; they're all rooted in basic research," saysJoan Massagu, PhD, Director of the Sloan Kettering Institute and MSK's Chief Scientific Officer. "Sometimes it can take years for the medical relevance of a particular discovery to become clear."
A second study, led by Studer Lab graduate studentsEmiliano HergenrederandAndrew Minottiand published January 2 inNature Biotechnology, identified a combination of four chemicals that together can promote neuronal maturation. Dubbed GENtoniK, the chemical cocktail both represses epigenetic factors that inhibit cell maturation and stimulates factors that promote it.
Along with helping to bring neurons to an adultlike state faster in the lab, the approach holds promise for other cell types, the researchers note.
Not only was GENtoniK shown to speed the maturation of cortical neurons (involved in cognitive functions) and spinal motor neurons (involved in movement), but the chemicals were also able to accelerate the development of several other types of cells derived from stem cells, including melanocytes (pigment cells) and pancreatic beta cells (endocrine cells).
"The generation of human neurons in a dish from stem cells provides a unique inroad into the study of brain health and disease," the journal editors note in aresearch briefingthat accompanied the study. "A major obstacle in the field arises from the fact that human neurons require many months to mature during development, making it difficult to recapitulate the process invitro. The authors provide a valuable research tool by developing a simple drug cocktail that speeds up the maturation timeframe."
The findings could be particularly helpful in modeling disorders like autism that involve problems with synaptic connectivity, Dr. Studer says.
Still, he notes, additional research is needed to develop models of neurodegenerative disorders that don't occur until very late in life, such as Parkinson's disease, which haslong been a focus of Studer's research.
"Typically, a person is 60 to 70 years old when the disease begins. No baby gets Parkinson's," he says. "So, for those diseases, we need to be able to put the cells not just into an adult state but into an aged-like state. That's something we're continuing to work on."
Source:
Journal references:
See original here:
Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]