EnginZyme's technology could dramatically reduce the equipment and energy costs of manufacturing by ... [+] harnessing nature's ability to make chemicals, potentially transforming the trillion-dollar global chemistry market.
Manufacturing is a crude science. We destroy mountains to extract heavy metals, which we then cook at high pressures and temperatures to make things like plastic, nylon, and rubber. Compare this to nature: Living cells and organisms can make all the chemicals needed to thrive across a wide range of environments, often requiring little more than carbon atoms and some sunlight.
Nature apparently has a much better solution, says EnginZyme CEO Karim Engelmark Cassimjee. His company sees harnessing biology as a manufacturing platform not as a mere sustainability play, but as a trillion-dollar global market opportunity.
On Wednesday, April 22, EnginZyme announced that they raised 6.4 million in a Series A round led by Sofinnova Partners, bringing the companys total funding to over 10 million. A spin-out of the Arrhenius Laboratory at Stockholm University, the six-year-old company has been quietly working on a new technology that is set to revolutionize the impact that synthetic biology has on the manufacturing of everything from food ingredients to biomaterials to active pharmaceutical ingredients.
Broadly speaking, companies are starting to adopt biomanufacturing as their preferred method of production. After all, whats good for the environment is generally good for business (less energy, fewer resources, less chemical processing, and lower costs). Biomanufacturing represents a growing share of the products we use every day. As an example, high-performance bio-electronics will probably end up in your next smartphone, laptop, watch, or television not because their made with biology, but simply because they work better.
But what is astonishing about EnginZymes approach is this: It is all done all through the use of cell-free synthetic biology, a technique that can harness the power to build with biology, without needing the cell itselfand all of the complexity that goes along with it.
Our platform mimics fermentation, says Cassimjee, talking about the age-old process of using biology to make everything from kimchee to beer. Fermentation has been a cornerstone of the biotech industry for decades now. But EnginZymes technology promises a 40% reduction in CapEx (the cost of manufacturing equipment and maintenance) and a 70% reduction in energy.
We use biology and enzyme catalysts instead of metal catalysts, at lower temp and pressure, says Cassimjee. This is a game-changer that could enable EnginZyme to compete with the slower moving giants of the chemical industry, allowing for smaller-scale, on-demand manufacturingsomething this post-COVID world and its need for localized supply chains is clamoring for.
Cassimjee wants to take on nothing less than the entire chemical industry, everything from plastics to bulk chemicals. But the task wont necessarily be easy for a startup. For each application, we have to produce a chemical process and production plant, he says. And the end game is coming up with a proven, large-scale production strategy for making whatever it is the world needs from chemistry.
The fixed-bed technology EnginZymes is using is already well understood, and its separation technology is also well understood. EnginZymes secret saucethe advancement that has the potential to change the paradigm of bio-based manufacturingis a special material that can bind to enzymes while allowing them to maintain their functionality.
With conventional chemistry, You put everything in the tank and mix, says Cassimjee. That chemistry depends on enzymes, the proteins that cause a chemical reaction to move forward. For example, when we hear about a company that has engineered a bacterium to turn sugar into a high-value chemical, it is actually a set of enzymes inside the bacteria that does the hard work of transforming sugar into a chemical. The bacteria simply act as tiny tanks that produce and mix the enzymes, facilitating the fermentation process that makes useful chemical for us.
But with this new tech, the biological enzymes are fixed, and the various ingredients flow through the fixed enzymes, and the final product flows out the other end.
As Ive written before, synthetic biology and the protein design world are now able to engineer enzymes for all sorts of novel applications. And because enzymes are long chains of 20 different amino acids, the array of different possible enzymes available is more than the number of stars in the universe, giving humans working from first-order design principles an infinite design space to work within.
If a company has a specific molecule in mind, we can help them make it, Cassimjee says.
EnginZyme works with companies who are using biocatalystsenzymes made with biologyto scale their processes up to industrial production scales.
By separating out the enzymes from the bacteria, EnginZyme greatly simplifies the chemical production process. It significantly simplifies the process, removing the extraneous chemical reactions and energy necessary to keep the bacteria alive. Instead of using a large vat of bacteria that is expensive to set up and run, companies can use an efficient column filled with concentrated enzymes, continuously feeding sugar in the top, and getting their product out the bottom.
As Cassimjee describes it, Its like comparing somebody hand-building a car to Henry Ford and the automated assembly line.
Stevia is a naturally sweet substitute for sugar, but can synthetic biology make it less bitter?
One example of how EnginZymes technology will impact us is in the world of nutrition. The sugar we add to our cakes, cookies and sauces is homogenous, meaning that every molecule (sucrose) is the same. But this isnt natural, and it certainly isnt healthy. I have written before about companies that are developing healthy alternatives to sugar, like Codexis with Stevia. EnginZymes technology could enable a future where we have access to many different types of healthy sugars and sugar replacements, each one suited for a different specific use case.
We can see the same thing happening with plastics, or with other molecules. We currently have different plastic molecules that are used for different purposes (plastic bottles versus plastic bags, for example), but in the future we could develop greener alternatives to all of these, producing them from waste or making them biodegradable.
Many in the startup world would tell you that venture funding is nearly frozen right now, as funds are evaluating which businesses will be able to survive the new world we live in. With that in mind, for EnginZyme to raise such an impressive round of funding, somebody must believe they are onto something truly transformative.
Biomanufacturing isnt just about making our current materials cheaper. It is also about bringing incredible new products to market that outperform the best products that conventional chemistry can give us now. By learning from and building upon the diversity that nature has given us, we can make a better product in a better way.
Follow me on twitter at @johncumbers and @synbiobeta. Subscribe to my weekly newsletters in synthetic biology.
Thank you to Calvin Schmidt for additional research and reporting in this article. Im the founder ofSynBioBeta, and some of the companies that I write aboutincluding Codexisare sponsors of theSynBioBeta conferenceandweekly digestheres the full list of SynBioBeta sponsors.
The rest is here:
The Future Of Manufacturing Is Built With Biology. Or, How This Biotech Startup Is Challenging The Trillion-Dollar Global Chemical Industry. - Forbes
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]