A little more than a decade ago, seven patients with hemophilia Ba disease caused by a mutation on the F9 gene that prevents patients from forming crucial clotting proteinsvolunteered to be the first humans to receive a gene therapy delivered using an adeno-associated virus as a vector. This particular treatment didnt move past the Phase 1/2 trial because, while it was deemed safe, the patients did not sustain expression of the gene. But two other gene therapies based on an adeno-associated virus (AAV), Luxturna for rare forms of blindness and Zolgensma for spinal muscular atrophy, have since been approved by the US Food and Drug Administration (FDA), and several pharmaceutical companies are now pursuing regulatory approval of AAV-carried gene therapies for hemophilia B.
Recently, scientists followed up with four of those original patients. In a study published in Molecular Therapy in September, they report that the men are still free of any worrisome toxicities related to the treatment. The study wasnt all good news, though. The team also found that after all these years, the men still had elevated levels of AAV-neutralizing antibodies. That means that if an AAV gene therapy is approved to treat their illness, they likely wont be able to benefit from itthe antibodies would chew up the vector before it could insert the corrective gene.
Administration of an AAV gene therapy is essentially a vaccine against AAV, says Lindsey George, a hematologist at the Childrens Hospital of Philadelphia who led the research. Hers was not the first study to identify antibodies as a problem for those receiving AAV gene therapies, but it is the first to show that elevated titers can last this long. This role of AAV neutralizing antibodies is huge, says George, as it stands to undermine the effectiveness of gene therapies.
Because AAVs are viruses, the human immune system creates antibodies upon exposure that recognize and neutralize them in subsequent encounters. Sometimes patients have neutralizing antibodies in their blood before ever having received a gene therapy because theyre exposed to AAVs in the environment.
The ability to effectively modulate the antibody-mediated immune response could make AAV gene therapies far more effective for far more patients than they are now.
Along with high levels of antibodies to the specific AAV vector that theyd receivedAAV2the patients Georges team evaluated also had neutralizing antibodies to several other commonly used AAV vectors, namely, AAV5 and AAV8, she tells The Scientist.
Andrew Davidoff, a pediatric surgeon at St. Jude Childrens Research Hospital who studies AAV gene therapies but was not involved in the study, says, This paper suggests that not only will they not be able to receive a second dose of vector of the same [type of AAV], but potentially even other [types].
If scientists can prevent antibodies from neutralizing the AAV, they would not only give patients like these another opportunity to receive a more effective dose of gene therapy, but it will expand the patients that we can treat with the therapy to include the 3050 percent of patients who have already been exposed to AAVs in the environment, says Giuseppe Ronzitti, who heads a lab focused on gene therapy research at Genethon.
But, Davidoff says, nobody has found a suitable solution yet that is likely to be accepted by patients. The body has evolved over millions of years, this immune system that helps fight off infections. So to overcome that, even temporarily, is not an easy task.
Some immunosuppressant drugs wont work if the body has already developed specific antibodies to a particular pathogen, such as AAV. Scientists are therefore testing combinations of different types of immunosuppressants they hope will prevent the body from attacking AAVs, but these are likely to come with major risks, chiefly, susceptibility to infection.
Another option is plasmapheresisa process in which a persons blood is removed from the body and the cells separated from the plasma so that they can be reinfused without the antibodies found in the plasmabut, like immunosuppressant drugs, the technique is nonspecific and comes with similar risks. Its a matter of risk-benefit with the continued immunosuppression, says Ronzitti.
So scientists have been looking for other ways to control the bodys response to these gene therapy vectors.
Ronzitti and his team recently proposed a solution in Nature Medicine. The scientists used the imlifidase (IdeS) protein, conditionally approved by the European Commission, to degrade immunoglobulin G (IgG) antibodies that are developed after the body encounters a specific antigen so that it can remember and target that antigen in the future, and thus might cause a patient to reject a transplanted kidney. IgG antibodies are responsible for the immune systems response to AAVs. Its a newer, less invasive alternative to plasmapheresis, Ronzitti tells The Scientist in an email.
The team injected monkeys with the IdeS protein before administering a dose of gene therapy targeting the liver. The treatment appeared safe, the monkeys levels of preexisting AAV antibodies went down, and the AAV vector successfully made its way to the liver. To model a scenario in which a patient would need more than one dose of gene therapy, the scientists administered an AAV gene therapy to another group of monkeys before giving them the IdeS protein to degrade the antibodies theyd developed in response, then readministered the gene therapy. Again, AAV antibodies diminished after the IdeS treatment and the second gene therapy dose was successfully delivered.
One drawback to the approach is that IgGs are the most prevalent type of antibody found in the blood, and destroying all of them may have undesirable side effects. In an attempt to develop a more targeted therapy, one group published a study in January demonstrating that a specialized version of plasmapheresis could reduce the levels of antibodies against human AAVs in mice to the point where a new gene therapy should be effective, without depleting all other immunoglobulins that formed in response to infections.
More recently, a team of researchers at the University of Pittsburgh Medical Center made use of CRISPR-Cas9 to increase the efficacy of AAV gene therapy in mice. Pathologist Samira Kiani and her team werent looking for ways to improve gene therapy, but instead were seeking to temporarily modulate immunity in hopes of changing the course of diseases such as septicemia, a precursor to sepsis that occurs when an infection makes its way to the blood. The researchers aimed to temporarily downregulate the Myeloid differentiation primary response 88(Myd88) gene, which would briefly dampen the immune response, and then remove the brakes.
The gene that we chose to target is known to a be a central gene for innate and adaptive immunity, says Kiani. It controls the production of IgG antibodies in response to AAV exposure, which provided a simple way to measure whether the strategy was effective. If the team administered an AAV to an animal shortly after it had received the CRISPR-Cas9 treatment, it should have a substantially lower antibody response to the virus.
First, they administered the CRISPR to tamp down Myd88 activity and measured a reduction in the expression of the Myd88 gene, as theyd expected. Then, the team used the technique to treat mice just before giving them a dose of AAV-based gene therapy that was designed to lower their cholesterol.
Weeks later, the researchers administered a second dose of the same AAV vector to determine if the temporary immunosuppression during the first dose had prevented the mice from making enough antibodies to thwart a second dose. The mice that were pretreated with the immune-modulating CRISPR showed lower levels of AAV-neutralizing antibodies and more dramatic responses to the cholesterol-lowering AAV treatment. The study was published in NatureCell Biologyin September.
If given prior to the administration of an AAV gene therapy, this approach would prevent the formation of new antibodies, so the patient could receive a second dose later, if needed, says Kiani. Given that the CRISPR treatment only prevents the development of antibodies temporarily, it shouldnt cause any long-term suppression of the rest of the immune system. On the flip side, because it doesnt clear existing antibodies, if the patients have already pre-existing antibodies [from natural exposure] this approach might not be the best approach.
All of the potential solutions have a long way to go, including still needing to be tested in human patients, but the ability to effectively modulate the antibody-mediated immune response could make AAV gene therapies far more effective for far more patients than they are now, says Ronzitti. The immune response to these vectors is quite a complex story, he says. But we are solving the issues one by one.
L. George et al., Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B,Molecular Therapy,doi:10.1016/j.ymthe.2020.06.001, 2020.
F. Moghadam et al., Synthetic immunomodulation with a CRISPR super-repressor in vivo,Nature Cell Biology,doi:10.1038/s41556-020-0563-3, 2020.
The rest is here:
Thwarting AAV-Neutralizing Antibodies Could Improve Gene Therapy - The Scientist
- The biotech bi-weekly: optimizing qPCR and spatial biology research, making cell cultivation more sustainable and ushering in a new era of drug... - March 5th, 2025 [March 5th, 2025]
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]