The basic idea of molecular farming is to genetically modify plants so that, alongside all their usual biochemicals, their cells produce biomolecules that are useful to us. Its not a new idea.
The field was kicked off in 1989, when researchersfixed tobacco plants so that they produced a proof of concept antibody protein. Plenty of hype ensued in the following decade or so. One of the early ideas was that this could produceedible medicines bananas, for instance, that expressed vaccines in their cells. Molecular farming seemed like a world changing idea, capable of providing medicine easily and cheaply to billions of people.
One reason it didnt take off, says Professor Julian Ma at St Georges, University of London, UK, is that it can be difficult to control dosage with edible vaccines: How do you stop somebody eating 20 bananas because they think its good for them? There was a moment where everybody got seriously excited. And then realised oh no, its actually not going to be quite so straightforward.
Living things have biomachinery that uses a nucleic acid code as an instruction manual for building proteins. Molecular farming hijacks this machinery and gets it to use synthetic instructions to produce new proteins. But bacteria and other mammalian cells, such as the Chinese hamster ovary (CHO) cell, can do this too. Indeed, CHO cells are the most common way of culturing proteins. Cultured proteins are mostly used as drugs, for treating conditions like diabetes and problems with blood clotting. Culturing methods are more expensive and time consuming than molecular farming but the processes involved are well established and validated for safety molecular farming hasnt got there yet. But it is beginning to catch up.
Plants
A few years ago, Prof. Ma conducted a proof of concept study to show that an antibody could be produced in plants and isolated from them using simple separation techniques and that the resulting proteins could be just as pure and thus safe for medical use.
Another helpful factor is the rise of a genetic modification technology called transient expression. This is a technique that involves having cells express some DNA temporarily. Crucially, it is easy in plants. It involves dipping them in a special solution and then allowing them to grow. This means that in some cases plant scientists can go from genetically modifying plants to having them express new proteins in two weeks or less.
Molecular farming facilities are getting more common. That farm in Owensboro belongs to Kentucky BioProcessing, a long-established firm that helped produce the ZMapp antibodies to help treat Ebola during the 2015 outbreak. Another large facility is being built in Quebec, Canada. And Brazil has also announced it intends to build one, says Prof. Ma. I see that as a bit of a breakthough. Its the first one in the southern hemisphere.
It is in this context that Dr Diego Orzez at the Institute for Plant Molecular and Cellular Biology in Valencia, Spain, is running theNewcotiana project. Dr Orzez says that although lots of large farms exist, no one has yet put much effort into breeding the plants they use to improve their productivity he and his team are now doing just that.
They are working on two closely related plants. The first isNicotiana benthamiana, a fragile, dwarf cousin of the tobacco plant, which is the species grown in most commercial molecular farms because it is so easy to genetically modify. The second isNicotiana tabacum, the larger, hardy plant that is grown commercially for tobacco. The plan is to optimise both.
Tobacco
Theres a special reason why Dr Orzezwants to work withNicotiana tabacum. He says that there are communities across Europe who have traditionally grown tobacco for use in cigarettes but face a certain stigma for doing so. Some such communities can be found in the relatively wet area of La Vera, in the Extremadura region of Spain, for instance. Many of these communities are keen to switch to growing tobacco that could be put to better use providing medicines rather than tobacco according to Dr Orzez.
Admittedly, theres a wrinkle in the plan because plants that have been genetically modified cant legally be grown outdoors in the EU because of the rules on genetically modified organisms. However, Dr Orzezsays he hopes to convince the authorities this ought to change. This is because the plants in his project, while officially classed as GMOs, have been produced by gene editing and they dont contain genes from other organisms as most GMOs do.
In the meantime, he says he has some encouraging results from his project. He has produced a cultivar ofNicotiana tabacumthat does not flower, which means it cannot spread seeds or pollen and so should be safe to grow outside and separately a cultivar that produces an anti-inflammatory compound. The next step is to combine these into a single plant line. He also has improved versions ofNicotiana benthamianain field trials.
In all of Dr Orzezs work the proteins are expressed in the plants leaves. But there are reasons why expressing them in other parts of a plant would be handy.
If you wanted to stockpile (a vaccine), for example, seeds would be brilliant, said Prof. Ma. They are natural protein storage organs and theyre incredibly stable. You could produce a barn full of seed and keep it almost forever.
Prof. Ma coordinates a project calledPharma-Factory, which is developing new farming platforms, so that proteins can be expressed in not just leaves but seeds, roots and algae. The project includes five small firms, and the plan is to have several protein therapeutics, including an HIV-neutralising antibody, developed to the point where they can be commercialised.
If you wanted to stockpile (a vaccine), for example, seeds would be brilliant.
-Prof. Julian Ma, St Georges, University of London, UK
Coronavirus
So what of coronavirus? Several large molecular farming companies are already working on vaccines. For example, Medicago, headquartered in Quebec, has succeeded in directing plants to produce proteins that can be assembled into a virus-like particle, which is essentially the protein shell of the SARS-CoV-2 virus with nothing inside it. The company says results from tests in mice initiated the production of antibodies and itexpects to begin phase I clinical trials in humans this summer.
For their part, the Newcotiana teamreleased the genome sequence ofNicotiana benthamianabefore being ready to publish it formally in an academic journal. Plenty of companies and academics will benefit from knowing as much as possible about the plants themselves through this genome, said Dr Orzez.
Dr Orzezalso says his team have pivoted to working on coronavirus, modifying some of their plants so that they produce the spike protein from SARS-CoV-2 virus. This spike protein is an important reagent in serological tests that determine if a person has developed Covid-19 antibodies.In plants, it can be produced quickly and easily in places where supplies of the protein are low. The team still need to work to make sure the proteins they produce are validated for safety but if they are, molecular farming could be a way of helping mass testing.
The fundamental attractions of molecular farming have not changed since the 1980s: it is cheap, its safe and it can be scaled up easily and quickly. As the coronavirus pandemic continues and the race is on to develop working vaccines, that last fact may prove to be extremely attractive, especially in poor parts of the world.
The research in this article was funded by the EU. If you liked this article, please consider sharing it on social media.
This article was originally published on Horizon magazine.
See the article here:
We can programme plants to grow biomolecules. Is farming the future of vaccines? - ScienceBlog.com
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]