Pig Development – Embryology – UNSW Sites

Introduction

Pig (Sus scrofa) developmental model is studied extensively due to the commercial applications of pigs for meat production and for health issues such as obesity, cardiovascular disease, and organ transplantation (xenotransplantation).

Historically, there is an excellent description of the pig reproductive estrous cycle and the cyclic changes that occur within the ovary.[1]

This table allows an automated computer search of the external PubMed database using the listed "Search term" text link.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

More? References | Discussion Page | Journal Searches | 2019 References | 2020 References

Search term: Pig Embryology | Pig Development

See also the Discussion Page for other references listed by year and References on this current page.

Taxonomy ID: 9823

Genbank common name: pig

Inherited blast name: even-toed ungulates

Rank: species

Genetic code: Translation table 1 (Standard)

Mitochondrial genetic code: Translation table 2 (Vertebrate Mitochondrial)

Other names: wild boar, swine, pigs

Lineage (full): cellular organisms; Eukaryota; Fungi/Metazoa group; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Laurasiatheria; Cetartiodactyla; Suina; Suidae; Sus

Table data - Otis and Brent (1954)[8]

The images below are from the 1897 Normentafeln zur Entwicklungsgeschichte der Wirbeltiere - Sus scrofa domesticus (Normal Plates of the Development of the Pig Embryo) by Franz Keibel

Diagram showing form and dimensions of the uterus and Fallopian tubes of the sow.[1] Drawn from an average specimen taken from a young mature animal.

Female pig is called a sow.

Events of the average cycle of 21 days in the non-pregnant sow.[1]

Diagram showing relationship between oestrua, ovulation, corpus luteum development, and the progress of the ova in the sow.

Events of the first weeks of pregnancy.[1]

Diagram showing relationship between oestrua, ovulation, corpus luteum development, and the progress of the ova in the sow.

Scanning electron microscope images of the endometrial surface of a Day 13 pregnant sow.[9]

Male pig is called a boar.

Capacitation alters the ultrastructure of the apical head and the acrosome of boar sperm.[6]

Model for capacitation-induced stable docking of the acrosome to the sperm plasma membrane.[6]

The testis of the pig receives its first blood supply when the embryo is 33 mm in length.[10]

The data below is summarised from an excellent study of early neural development in the pig.[11] The same authors have studied neural development in the rabbit.

anterior neuropore

22 somite embryo - anterior neuropore is completely closed. (closure sites for the anterior neuropore in mouse embryo, none of these were detected in the pig embryo)

posterior neuropore

8-20 somite embryos - the width of the posterior neuropore does not change, while the rate of closure gradually increases.

Plates below are from a 1916 thesis on palate development in the pig.[12]

Fig. 2. Ventral view of the roof of the primitive mouth of the 17 mm. embryo.

Fig. 3. Ventral view of the roof of the primitive mouth of the 20 mm. embryo.

Fig.4. Ventral view of the roof of the primitive mouth of the 25 mm. embryo.

Fig. 5. Ventral View of the roof of the primitive mouth of the 27 mm. embryo.

Fig. 6. Ventral view of the roof of the secondary mouth of the 50 mm. embryo.

Fig. 7. Ventral view of the roof of the secondary mouth of the 39 mm. embryo.

Fig. 8. Ventral View of the roof of the secondary mouth of the 70 mm. embryo.

Fig. 10. Cross-section of the head of the 12 mm. embryo posterior fig. 9, showing the union of the processes on one side and the blind sac on the other.

Fig. 11. Cross-section through the head of a 17 mm. embryo showing primitive choanae.

Fig. 12. Cross~section through the anterior region of the head of a 27 mm embryo showing the shorter palatal processes.

Fig. 13. Cross-section through the head of a 27 mm. embryo posterior to fig. 12, to show the processes longer in this middle region.

Fig. 14. Cross-section of the head of the 50 mm. embryo, showing the anterior communication of the nasal and mouth cavities.

Fig. 15. Cross-section through the head of the 30 mm. embryo, posterior to fig. 14, to show the fusion of the processes, the slight indication of the invasion of mesemchyme and the fusion of the processes with the nasal septum.

Fig. 16. Cross-section through the head of the 30 mm. embryo in the posterior region to show the ventral separation.

Fig. 17. Cross-section of the 39 mm. embryo cut slightly oblique, showing on one side the respiratory duct cut off,on the other, the connexion with the respiratory cavity.

Miniature Pig Palate Timeline[2]

Arrangement of lymphatic vessels in 40 mm embryo

Lymphatic vessel network in embryo skin. A 18 mm; B 20 mm; C 30 mm; D 40 mm

Transverse section spinal cord 20 cm embryo

Wall of uterus and chorion

Transverse section of umbilical cord of a pig embryo six inches in length

Recent References

Buddington RK, Sangild PT, Hance B, Huang EY & Black DD. (2012). Prenatal gastrointestinal development in the pig and responses after preterm birth. J. Anim. Sci. , 90 Suppl 4, 290-8. PMID: 23365359 DOI.

Somfai T, Kikuchi K & Nagai T. (2012). Factors affecting cryopreservation of porcine oocytes. J. Reprod. Dev. , 58, 17-24. PMID: 22450280

Ostrup E, Hyttel P & Ostrup O. (2011). Embryo-maternal communication: signalling before and during placentation in cattle and pig. Reprod. Fertil. Dev. , 23, 964-75. PMID: 22127002 DOI.

Waclawik A. (2011). Novel insights into the mechanisms of pregnancy establishment: regulation of prostaglandin synthesis and signaling in the pig. Reproduction , 142, 389-99. PMID: 21677026 DOI.

Robison OW. (1976). Growth patterns in swine. J. Anim. Sci. , 42, 1024-35. PMID: 770410

Book SA & Bustad LK. (1974). The fetal and neonatal pig in biomedical research. J. Anim. Sci. , 38, 997-1002. PMID: 4596894

Moor RM. (1968). Foetal homeostasis: conceptus-ovary endocrine balance. Proc. R. Soc. Med. , 61, 1217-26. PMID: 4973146

Moor RM. (1968). Effect of embryo on corpus luteum function. J. Anim. Sci. , 27 Suppl 1, 97-118. PMID: 4951167

Zhang L, Lin Z, Bi Y, Zheng X, Xiao H & Hua Z. (2018). CO2 concentration affects in vitro pig embryo developmental capacity. Pol J Vet Sci , 21, 609-614. PMID: 30468346 DOI.

Liu J, Zhu Y, Luo GZ, Wang X, Yue Y, Wang X, Zong X, Chen K, Yin H, Fu Y, Han D, Wang Y, Chen D & He C. (2016). Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun , 7, 13052. PMID: 27713410 DOI.

Hassoun R, Schwartz P, Rath D, Viebahn C & Mnner J. (2010). Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos. J. Anat. , 217, 665-78. PMID: 20874819 DOI.

Search Pubmed: pig development | pig embryo | Sus scrofa development

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

Cite this page: Hill, M.A. (2022, August 16) Embryology Pig Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Pig_Development

See the rest here:
Pig Development - Embryology - UNSW Sites

Related Posts