Genetics
Background:
Homunculus in Sperm One question that has always intrigued us humans is Where did we come from? Long ago, Hippocrates and Aristotle proposed the idea of what they called pangenes, which they thought were tiny pieces of body parts. They thought that pangenes came together to make up the homunculus, a tiny pre-formed human that people thought grew into a baby. In the 1600s, the development of the microscope brought the discovery of eggs and sperm. Antonie van Leeuwenhoek, using a primitive microscope, thought he saw the homunculus curled up in a sperm cell. His followers believed that the homunculus was in the sperm, the father planted his seed, and the mother just incubated and nourished the homunculus so it grew into a baby. On the other hand, Regnier de Graaf and his followers thought that they saw the homunculus in the egg, and the presence of semen just somehow stimulated its growth. In the 1800s, a very novel, radical idea arose: both parents contribute to the new baby, but people (even Darwin, as he proposed his theory) still believed that these contributions were in the form of pangenes.
Modern genetics traces its beginnings to Gregor Mendel, an Austrian monk, who grew peas in a monastery garden. Mendel was unique among biologists of his time because he sought quantifiable data, and actually counted the results of his crosses. He published his findings in 1865, but at that time, people didnt know about mitosis and meiosis, so his conclusions seemed unbelievable, and his work was ignored until it was rediscovered in 1900 by a couple of botanists who were doing research on something else. Peas are an ideal organism for this type of research because they are easy to grow and it is easy to control mating.
We will be looking at the sorts of genetic crosses Mendel did, but first, it is necessary to introduce some terminology:
Monohybrid Cross and Probabilities:
A monohybrid cross is a genetic cross where only one gene/trait is being studied. P stands for the parental generation, while F1 and F2 stand for the first filial generation (the children) and second filial generation (the grandchildren). Each parent can give one chromosome of each pair, therefore one allele for each trait, to the offspring. Thus, when figuring out what kind(s) of gametes an individual can produce, it is necessary to choose one of the two alleles for each gene (which presents no problem if they are the same).
Purple Pea Flower White Pea Flower For example, a true-breeding purple-flowered plant (the dominant allele for this gene) would have the genotype PP, and be able to make gametes with either P or P alleles. A true-breeding white-flowered plant (the recessive allele for this gene) would have the genotype pp, and be able to make gametes with either p or p alleles. Note that both of these parent plants would be homozygous. If one gamete from each of these parents got together to form a new plant, that plant would receive a P allele from one parent and a p allele from the other parent, thus all of the F1 generation will be genotype Pp, they will be heterozygous, and since purple is dominant, they will look purple. What if two individuals from the F1 generation are crossed with each other (PpPp)? Since gametes contain one allele for each gene under consideration, each of these individuals could contribute either a P or a p in his/her gametes. Each of these gametes from each parent could pair with each from the other, thus yielding a number of possible combinations for the offspring. We need a way, then, to predict what the possible offspring might be. Actually, there are two ways of doing this. The first is to do a Punnett square (named after Reginald Crandall Punnett). The possible eggs from the female are listed down the left side, and there is one row for each possible egg. The possible sperm from the male are listed across the top, and there is one column for each possible sperm. The boxes at the intersections of these rows and columns show the possible offspring resulting from that sperm fertilizing that egg. The Punnett square from this cross would look like this:
Note that the chance of having a gamete with a P allele is and the chance of a gamete with a p allele is , so the chance of an egg with P and a sperm with P getting together to form an offspring that is PP is =, just like the probabilities involved tossing coins. Thus, the possible offspring include: PP, ( Pp + pP, which are the same (Pp), since P is dominant over p), so = Pp, and pp.
Another way to calculate this is to use a branching, tree diagram:
Note, again, that the chance of Pp is +=. A shorter way of telling how many PP, Pp, and pp could be expected, would be to say that there is a 1:2:1 genotype ratio (that comes from the , , and , above, and by the way, notice that they add up to , so we know we have accounted for everything). The chance of getting at least one dominant allele (either PP or Pp) necessary for purple color (this can be written as P) is +=, so we could say that theres a 3:1 phenotype ratio. These two ratios are classic genotype and phenotype ratios for a monohybrid cross between two heterozygotes.
Mendels Four-Part Theory:
Based on his data, Mendel came up with a four-part theory of how genetics works:
Some special cases:
(Rh factor, by the way, is a totally separate gene with Rh+ [R] and Rh [r] alleles [actually, that gene also has multiple alleles, but the vast majority of people are positive or negative for one particular allele called D]. In the U. S., about 85% of the population is Rh+ [RR and Rr] and 15% Rh [rr], thus the chances of someone being O [having both ii and rr] would be 45% 15% = 6.75%. The rarest blood type in the U. S. would be AB, about 0.45% of the population.]
This is a cross where two traits/genes are under consideration. For example, in peas if R = round, so r = wrinkled, and Y = yellow, so y = green, in a cross between RRYY rryy, the gametes must have ONE ALLELE FOR EACH GENE, so in this case, RRYY could produce gametes with one R AND one Y, or RY, and rryy could produce gametes with one r AND one y, or ry. The F1 would get RY from one parent and ry from the other, thus would all be RrYy. Note that it is necessary to keep the alleles for the same gene together and put the dominant allele (capital letter) first for EACH GENE. In calculating what the F2 generation would be, you must first figure out what gametes (eggs or sperm) each parent can make. It is very important to remember that gametes must have ONE ALLELE FOR EACH GENE, so figure out the possibilities this way:
Thus, each parent could make four kinds of gametes, so the Punnett square would be 44 cells.
This would give the following possible offspring:
Thus the genotype ratio is 1:2:1:2:4:2:1:2:1 and the phenotype ratio is 9:3:3:1. Notice the shorthand used to represent the phenotypes. Since both RR and Rr will look round, rather than writing round pea seeds, we can use R to say its got at least one R, so itll be round.
Try This:
On your own, try IAiRr IBiRr, a cross involving both the ABO blood group and Rh factor. Note, a little later, we will discuss what those blood groups actually are/do.
Genotype and Phenotype Are Not the Same:
It is important to understand the difference between genotype and phenotype. For example, for most of the genes we will be discussing, an organism with the genotype of, say, BB and an organism who is Bb both have at least one dominant allele for that gene, and thus, would both express/show/be the dominant phenotype. If, for example, this was a gene for human eye color, then B would represent the dominant allele which codes for make brown eyes, and b would represent the recessive allele which codes for blue eyes (technically, more like, we dont know how to make brown, so blue is the default). Thus, people whose genotypes are either BB or Bb both have instructions for make brown, so the phenotypes of both are brown eye color.
As another example where many people get confused, an individuals sex is a phenotype, not a genotype! We can talk of a person as having either two X chromosomes (XX) or one X and one Y chromosome (XY). Those are, essentially, genotypes, and there are also a few people who have genotypes such as X (also called XO), XXX, or XXY. Those X and Y chromosomes contain/consist of a number of genes, and factors such as what alleles a person has for each of those genes, how those alleles are expressed, and how that gene expression affects/influences various body processes will all come together to produce that phenotype which we call a persons sex. In humans, if all those alleles are expressed in what we like to think of as being normal, then, usually, X, XX, and XXX are expressed as a female phenotype (with X and XXX producing some other physical characteristics considered to be typical for those genotypes), while the result of how the XY combination is expressed usually results in what we refer to as a male phenotype.
However, while uncommon, it is entirely possible that due to a mutation in some gene, somewhere, that codes for some enzyme or hormone, a person with 2 X chromosomes (XX) can have a male phenotype; can, clearly and unambiguously, be male. Similarly, while also not very common, it is also possible, due to a mutation in some gene, somewhere, that codes for some hormone or enzyme, that a person with an X and a Y chromosome (XY) can have a female phenotype; can, clearly and unambiguously, be female. Interestingly, because of differences in how the genes/alleles are expressed, the XXY combination typically results in a male in humans but results in a female in fruit flies.
Our culture, our way of thinking, is so locked into having/needing to choose between male and female as the only two options, that while in the unambiguous cases just mentioned where a persons expressed phenotype obviously fits our preconception of maleness or femaleness even if their genotype/chromosomes are different from what we might think (and of which we would not even be aware unless we were that persons doctor and maybe not even then), on the other hand, people whose bodies dont exactly and neatly fit into one of those two categories are lumped together in a group and labeled as intersex. Typically, at birth, their parents are advised by medical personnel to choose whether they wish to bring this child up as a boy or a girl, and may even be pressured into having cosmetic surgery performed on the child to make the child look more like the chosen sex assignment, yet it frequently happens as the child grows up, due to the influence of internal factors such as hormones, etc., that he or she does not feel like the sex which the doctors assigned/labeled at birth. On the other hand, if parents try to be more neutral and let the child make that choice when and if the child decides to do so, that tends to expose the child to a lot of ridicule from classmates and even other adults.
Pedigrees:
Sample Pedigree In pedigrees, a circle represents a female and a square represents a male. Filled-in vs. open symbols are used to distinguish between two phenotypes for the gene in question, and a half-filled symbol may be used to designate a carrier (a heterozygous individual who has a recessive allele for some gene, but is not showing that phenotype). Here is a sample pedigree for eye color. If the people with filled-in (dark) symbols have brown eyes and those with open (light) symbols have blue eyes, can you figure out the genotypes of the people marked with *?
Genetic Basis of Behavior, Polyploids:
Some further notes on genetics: We tend to think of genes that control what an organism looks like, etc., but genes can also control behavior of animals. For example, bird songs and other courtship rituals are under genetic control. The most successful competitors live and mate and pass on their genes. On a different subject, many of our horticultural plant varieties are polyploid plants. Typically, like us, plants are diploid. Horticulturists have figured out ways to manipulate plants and make triploid or tetraploid plants. Typically these plants are larger and/or have bigger or more ruffled flowers and/or larger seeds. While triploid plants are usually sterile (with three sets of chromosomes they have trouble doing meiosis), tetraploid plants are usually fertile and can reproduce. I believe I read somewhere that the wheat we eat is actually a hexaploid, resulting in seeds that are quite a bit larger than its grass-like ancestor.
References:
Borror, Donald J. 1960. Dictionary of Root Words and Combining Forms. Mayfield Publ. Co.
Campbell, Neil A., Lawrence G. Mitchell, Jane B. Reece. 1999. Biology, 5th Ed. Benjamin/Cummings Publ. Co., Inc. Menlo Park, CA. (plus earlier editions)
Campbell, Neil A., Lawrence G. Mitchell, Jane B. Reece. 1999. Biology: Concepts and Connections, 3rd Ed. Benjamin/Cummings Publ. Co., Inc. Menlo Park, CA. (plus earlier editions)
Marchuk, William N. 1992. A Life Science Lexicon. Wm. C. Brown Publishers, Dubuque, IA.
Continue reading here:
- Texas A&M Researchers Uncover Secrets Of Horse Genetics For Conservation, Breeding - Texas A&M University Today - November 20th, 2024 [November 20th, 2024]
- Myriad Genetics Announces Prequel Prenatal Screening Can Now be Performed Eight Weeks into Pregnancy - GlobeNewswire - November 20th, 2024 [November 20th, 2024]
- Fulgent Genetics, Inc. (FLGT): Among the Best Genomics Stocks to Buy Right Now - Yahoo Finance - November 20th, 2024 [November 20th, 2024]
- Precision mutational scanning: your multipass to the future of genetics - Nature.com - November 20th, 2024 [November 20th, 2024]
- Advancements of Haploid Technology in Crops: New Horizons in Breeding and Genetics - Frontiers - November 20th, 2024 [November 20th, 2024]
- Toward advances in retinoblastoma genetics in Kenya - Nature.com - November 12th, 2024 [November 12th, 2024]
- CRISPR/Cas9 screens identify key host factors that enhance rotavirus reverse genetics efficacy and vaccine production - Nature.com - November 12th, 2024 [November 12th, 2024]
- Genetics Play Key Role in Animal Health and Welfare, Aggression and Handling - Farms.com - November 12th, 2024 [November 12th, 2024]
- Episode 174: Rudy Tanzi talks about genetics, aging and the hallmarks of Alzheimers - IHMC - October 26th, 2024 [October 26th, 2024]
- Ocuphire and Opus Genetics merge to develop IRD gene therapy - Pharmaceutical Technology - October 26th, 2024 [October 26th, 2024]
- The RD Fund Announces Ocuphire Pharma's Acquisition of Opus Genetics - PR Newswire - October 26th, 2024 [October 26th, 2024]
- The RD Fund Announces Ocuphire Pharma's Acquisition of Opus Genetics - WV News - October 26th, 2024 [October 26th, 2024]
- Faculty of Science | Protecting Canadas number one crop through genetics - UM Today - October 26th, 2024 [October 26th, 2024]
- Ocuphire and Opus Genetics merge to develop IRD gene therapy - Yahoo Finance - October 26th, 2024 [October 26th, 2024]
- Opinion | Fascinated by genetics? Where are the peas Trump made to fornicate? - The Washington Post - October 13th, 2024 [October 13th, 2024]
- Dietary restriction can extend lifespan but genetics matters more - Nature.com - October 13th, 2024 [October 13th, 2024]
- 'They have much stronger players' - Bangladesh assistant coach bizarrely blames 'genetics' for lack of six hitters in the team - Sporting News - October 13th, 2024 [October 13th, 2024]
- Medical Moment: Genetics and breast cancer with USA Health Genetic Counselor Cassie Gurganus - AOL - October 13th, 2024 [October 13th, 2024]
- Myriad Genetics Announces Five Research Collaborations to Study the Use of MRD Testing in Breast Cancer - Yahoo Finance - October 13th, 2024 [October 13th, 2024]
- An ideologically-based and misleading critique of how modern genetics is taught - Why Evolution Is True - October 13th, 2024 [October 13th, 2024]
- 2024 Mercedes-AMG C63 Review: Bold But Beholden to Its Genetics - Newsweek - October 2nd, 2024 [October 2nd, 2024]
- Myriad Genetics Announces Third Patent Granted for Molecular Residual Disease (MRD) with Early Priority Date - GlobeNewswire - October 2nd, 2024 [October 2nd, 2024]
- Digbi Health Launches an SEC-regulated Offering, Giving Millions the Opportunity to Invest in Groundbreaking Genetics and Gut Microbiome-based Care... - October 2nd, 2024 [October 2nd, 2024]
- The role of genetics in depression | Second Opinion - KCRW - September 23rd, 2024 [September 23rd, 2024]
- Tilapia genetics company Spring Genetics teams up with UK data firm to improve fish welfare - SeafoodSource - September 23rd, 2024 [September 23rd, 2024]
- Picky eating in kids is mostly due to genetics, study says - Motherly Inc. - September 23rd, 2024 [September 23rd, 2024]
- Research Shows That Fussy Eating In Children Is Mainly Influenced By Genetics - RTTNews - September 23rd, 2024 [September 23rd, 2024]
- Genetics colloquium: Chris Hittinger on the genomic making of metabolic niche breadth Sep. 11 - University of WisconsinMadison - September 15th, 2024 [September 15th, 2024]
- NIH Recognizes Yales Expertise in the Genetics of Rare Diseases - Yale School of Medicine - September 15th, 2024 [September 15th, 2024]
- SOPHiA GENETICS and AstraZeneca Collaborate to Further Expand Global Access to Liquid Biopsy Testing - PR Newswire - September 15th, 2024 [September 15th, 2024]
- Medicines race dilemma: What science says about genetics and health [PODCAST] - Kevin MD - September 15th, 2024 [September 15th, 2024]
- Researchers want to unlock genetics of the worlds tiniest animals - Popular Science - September 15th, 2024 [September 15th, 2024]
- Sophia Genetics and AstraZeneca collaborate to expand liquid biopsy test rollout - Medical Device Network - September 15th, 2024 [September 15th, 2024]
- From farm to future: Technology in genetics - National Hog Farmer - September 2nd, 2024 [September 2nd, 2024]
- Editorial: Plant biotechnology and genetics for sustainable agriculture and global food security - Frontiers - September 2nd, 2024 [September 2nd, 2024]
- NSF Grant Brings Genetics Opportunities to Students in Alabama - Government Technology - September 2nd, 2024 [September 2nd, 2024]
- SBUs Ben Luft brings Lyme expertise to seminal paper on bacterial genetics and evolution - TBR News Media - September 2nd, 2024 [September 2nd, 2024]
- SOPHiA GENETICS to Present at the 22nd Annual Morgan Stanley Healthcare Conference and 9th Annual TD Cowen FutureHealth Conference - PR Newswire - September 2nd, 2024 [September 2nd, 2024]
- Singapores National Precision Medicine (NPM) Programme Engages Oxford Nanopore to Advance Understanding of the Genetics of Singapores Multi-Ethnic... - August 5th, 2024 [August 5th, 2024]
- Fulgent Genetics Second Quarter 2024 Earnings: Beats Expectations - Yahoo Finance - August 5th, 2024 [August 5th, 2024]
- Stopped clinical trials give evidence for the value of genetics - Nature.com - August 5th, 2024 [August 5th, 2024]
- What is DSD? Sex genetics and Olympic boxing controversy - Washington Examiner - August 5th, 2024 [August 5th, 2024]
- Fulgent Genetics Q2: Core Revenue Grows, but Profitability Is Still an Issue - The Motley Fool - August 5th, 2024 [August 5th, 2024]
- Viewpoint: Challenging yet another scientifically silly article claiming Black domination of sprinting and long distance running has nothing to do... - August 5th, 2024 [August 5th, 2024]
- Texas Company Trying To Resurrect Woolly Mammoths To Improve Genetics Of Bison - Cowboy State Daily - August 5th, 2024 [August 5th, 2024]
- Genetics confirms Berbers reached North Africa over 20,000 years ago; Arabs came in 7th Century CE - Down To Earth Magazine - August 5th, 2024 [August 5th, 2024]
- Unlocking plant genetics with telomere-to-telomere genome assemblies - Nature.com - July 26th, 2024 [July 26th, 2024]
- Carlo Ancelotti claims Jude Bellingham's 'genetics' are main reason behind Real Madrid & England superstar's meteoric rise to the top - Goal.com - July 26th, 2024 [July 26th, 2024]
- Genetics-based modeling estimates Idaho's wolf population was 1,150 in summer 2023 - Idaho Fish and Game - July 26th, 2024 [July 26th, 2024]
- Lung Cancer Research Foundation Joins Lung Cancer Advocacy Organizations and 23andMe to Launch Lung Cancer Genetics Study to Advance Research - PR... - July 26th, 2024 [July 26th, 2024]
- Fulgent Genetics (FLGT) Scheduled to Post Earnings on Friday - Defense World - July 26th, 2024 [July 26th, 2024]
- SOPHIA GENETICS Announces Expanded Relationship with Canada-Based OncoHelix - Financial Times - July 26th, 2024 [July 26th, 2024]
- LG Household & Health Care publishes research into the genetics of skin tone - GlobalCosmeticsNews - July 26th, 2024 [July 26th, 2024]
- Estonians gave their DNA to science now they're learning their genetic secrets - Nature.com - June 27th, 2024 [June 27th, 2024]
- Genetic clues to depression revealed in large study - PsyPost - June 27th, 2024 [June 27th, 2024]
- Move Over, Genghis Khan. Many Other Men Left Huge Genetic Legacies - Smithsonian Magazine - June 27th, 2024 [June 27th, 2024]
- 3X4 Genetics Selected as Partner for Preeminent Cancer Research and Treatment Nonprofit, The Metabolic Terrain ... - BioSpace - June 27th, 2024 [June 27th, 2024]
- NIFA Invests $6M in Animal Breeding, Genetics and Genomics | NIFA - National Institute of Food and Agriculture - June 27th, 2024 [June 27th, 2024]
- Arbel Harpak: Pursuing the Next Frontier in Genetics | Dell Medical School - Dell Medical School - June 27th, 2024 [June 27th, 2024]
- Coffee habits are partly linked to genetics, UC San Diego researchers say - NBC San Diego - June 27th, 2024 [June 27th, 2024]
- Advanced genetic tools help researchers ID new neurodevelopmental syndrome - Yale News - June 27th, 2024 [June 27th, 2024]
- Nutritious diet may protect against type 2 diabetes, regardless of genetics - News-Medical.Net - June 27th, 2024 [June 27th, 2024]
- Genome-wide association study identifies host genetic variants influencing oral microbiota diversity and metabolic ... - Nature.com - June 27th, 2024 [June 27th, 2024]
- Unlock the Secrets of Your DNA with Advanced Genetic Testing - North Forty News - June 27th, 2024 [June 27th, 2024]
- Modern and precise: Using gene editing to change the blueprint of an organism - Beef Magazine - June 27th, 2024 [June 27th, 2024]
- The 'gene deserts' unravelling the mysteries of disease - BBC.com - June 27th, 2024 [June 27th, 2024]
- UGA plant geneticists are tackling the climate crisis - Longview News-Journal - June 27th, 2024 [June 27th, 2024]
- Genetic Tests for Predicting Clopidogrel Response Gain Traction: AHA - TCTMD - June 27th, 2024 [June 27th, 2024]
- Bringing Gene Therapy to the Brain - The Scientist - June 27th, 2024 [June 27th, 2024]
- The importance of the paradise fish in evolutionary and behavioral genetics research - Phys.org - June 9th, 2024 [June 9th, 2024]
- What Is Fulgent Genetics, Inc.'s (NASDAQ:FLGT) Share Price Doing? - Yahoo Finance - June 9th, 2024 [June 9th, 2024]
- UW initiative aims to bring together social sciences and genetics - Wisbusiness.com - June 9th, 2024 [June 9th, 2024]
- Women have a higher genetic risk for PTSD, according to study by VCU and Swedish researchers - VCU News - June 9th, 2024 [June 9th, 2024]
- Genetics study points to potential treatments for restless leg syndrome - University of Cambridge news - June 9th, 2024 [June 9th, 2024]
- deCODE genetics: The rate, nature and transmission of mitochondrial DNA mutations in humans - PR Newswire - June 9th, 2024 [June 9th, 2024]
- Genetic association mapping leveraging Gaussian processes | Journal of Human Genetics - Nature.com - June 9th, 2024 [June 9th, 2024]
- Minimally destructive hDNA extraction method for retrospective genetics of pinned historical Lepidoptera specimens ... - Nature.com - June 9th, 2024 [June 9th, 2024]
- Restless legs syndrome tied to 140 'hotspots' in the genome - Livescience.com - June 9th, 2024 [June 9th, 2024]
- Paired tumor-germline testing can enhance patient carewith guidance from genetics specialists - The Cancer Letter - June 9th, 2024 [June 9th, 2024]
- Improved functional mapping of complex trait heritability with GSA-MiXeR implicates biologically specific gene sets - Nature.com - June 9th, 2024 [June 9th, 2024]