Methods in geneticsExperimental breeding
Genetically diverse lines of organisms can be crossed in such a way to produce different combinations of alleles in one line. For example, parental lines are crossed, producing an F1 generation, which is then allowed to undergo random mating to produce offspring that have purebreeding genotypes (i.e., AA, bb, cc, or DD). This type of experimental breeding is the origin of new plant and animal lines, which are an important part of making laboratory stocks for basic research. When applied to commerce, transgenic commercial lines produced experimentally are called genetically modified organisms (GMOs). Many of the plants and animals used by humans today (e.g., cows, pigs, chickens, sheep, wheat, corn (maize), potatoes, and rice) have been bred in this way.
Cytogenetics focuses on the microscopic examination of genetic components of the cell, including chromosomes, genes, and gene products. Older cytogenetic techniques involve placing cells in paraffin wax, slicing thin sections, and preparing them for microscopic study. The newer and faster squash technique involves squashing entire cells and studying their contents. Dyes that selectively stain various parts of the cell are used; the genes, for example, may be located by selectively staining the DNA of which they are composed. Radioactive and fluorescent tags are valuable in determining the location of various genes and gene products in the cell. Tissue-culture techniques may be used to grow cells before squashing; white blood cells can be grown from samples of human blood and studied with the squash technique. One major application of cytogenetics in humans is in diagnosing abnormal chromosomal complements such as Down syndrome (caused by an extra copy of chromosome 21) and Klinefelter syndrome (occurring in males with an extra X chromosome). Some diagnosis is prenatal, performed on cell samples from amniotic fluid or the placenta.
Biochemistry is carried out at the cellular or subcellular level, generally on cell extracts. Biochemical methods are applied to the main chemical compounds of geneticsnotably DNA, RNA, and protein. Biochemical techniques are used to determine the activities of genes within cells and to analyze substrates and products of gene-controlled reactions. In one approach, cells are ground up and the substituent chemicals are fractionated for further analysis. Special techniques (e.g., chromatography and electrophoresis) are used to separate the components of proteins so that inherited differences in their structures can be revealed. For example, more than 100 different kinds of human hemoglobin molecules have been identified. Radioactively tagged compounds are valuable in studying the biochemistry of whole cells. For example, thymine is a compound found only in DNA; if radioactive thymine is placed in a tissue-culture medium in which cells are growing, genes use it to duplicate themselves. When cells containing radioactive thymine are analyzed, the results show that, during duplication, the DNA molecule splits in half, and each half synthesizes its missing components.
Chemical tests are used to distinguish certain inherited conditions of humans; e.g., urinalysis and blood analysis reveal the presence of certain inherited abnormalitiesphenylketonuria (PKU), cystinuria, alkaptonuria, gout, and galactosemia. Genomics has provided a battery of diagnostic tests that can be carried out on an individuals DNA. Some of these tests can be applied to fetuses in utero.
Physiological techniques, directed at exploring functional properties or organisms, are also used in genetic investigations. In microorganisms, most genetic variations involve some important cell function. Some strains of one bacterium (Escherichia coli), for example, are able to synthesize the vitamin thiamin from simple compounds; others, which lack an enzyme necessary for this synthesis, cannot survive unless thiamin is already present. The two strains can be distinguished by placing them on a thiamin-free mixture: those that grow have the gene for the enzyme, those that fail to grow do not. The technique also is applied to human cells, since many inherited human abnormalities are caused by a faulty gene that fails to produce a vital enzyme; albinism, which results from an inability to produce the pigment melanin in the skin, hair, or iris of the eyes, is an example of an enzyme deficiency in man.
Although overlapping with biochemical techniques, molecular genetics techniques are deeply involved with the direct study of DNA. This field has been revolutionized by the invention of recombinant DNA technology. The DNA of any gene of interest from a donor organism (such as a human) can be cut out of a chromosome and inserted into a vector to make recombinant DNA, which can then be amplified and manipulated, studied, or used to modify the genomes of other organisms by transgenesis. A fundamental step in recombinant DNA technology is amplification. This is carried out by inserting the recombinant DNA molecule into a bacterial cell, which replicates and produces many copies of the bacterial genome and the recombinant DNA molecule (constituting a DNA clone). A collection of large numbers of clones of recombinant donor DNA molecules is called a genomic library. Such libraries are the starting point for sequencing entire genomes such as the human genome. Today genomes can be scanned for small molecular variants called single nucleotide polymorphisms, or SNPs (snips), which act as chromosomal tags to associated specific regions of DNA that have a property of interest and may be involved in a human disease or disorder.
Many substances (e.g., proteins) are antigenic; i.e., when introduced into a vertebrate body, they stimulate the production of specific proteins called antibodies. Various antigens exist in red blood cells, including those that make up the major blood groups of man (A, B, AB, O). These and other antigens are genetically determined; their study constitutes immunogenetics. Blood antigens of man include inherited variations, and the particular combination of antigens in an individual is almost as unique as fingerprints and has been used in such areas as paternity testing (although this approach has been largely supplanted by DNA-based techniques).
Immunological techniques are used in blood group determinations in blood transfusions, in organ transplants, and in determining Rhesus incompatibility in childbirth. Specific antigens of the human leukocyte antigen (HLA) genes are correlated with human diseases and disease predispositions. Antibodies also have a genetic basis, and their seemingly endless ability to match any antigen presented is based on special types of DNA shuffling processes between antibody genes. Immunology is also useful in identifying specific recombinant DNA clones that synthesize a specific protein of interest.
Because much of genetics is based on quantitative data, mathematical techniques are used extensively in genetics. The laws of probability are applicable to crossbreeding and are used to predict frequencies of specific genetic constitutions in offspring. Geneticists also use statistical methods to determine the significance of deviations from expected results in experimental analyses. In addition, population genetics is based largely on mathematical logicfor example, the Hardy-Weinberg equilibrium and its derivatives (see above).
Bioinformatics uses computer-centred statistical techniques to handle and analyze the vast amounts of information accumulating from genome sequencing projects. The computer program scans the DNA looking for genes, determining their probable function based on other similar genes, and comparing different DNA molecules for evolutionary analysis. Bioinformatics has made possible the discipline of systems biology, treating and analyzing the genes and gene products of cells as a complete and integrated system.
Genetic techniques are used in medicine to diagnose and treat inherited human disorders. Knowledge of a family history of conditions such as cancer or various disorders may indicate a hereditary tendency to develop these afflictions. Cells from embryonic tissues reveal certain genetic abnormalities, including enzyme deficiencies, that may be present in newborn babies, thus permitting early treatment. Many countries require a blood test of newborn babies to determine the presence of an enzyme necessary to convert an amino acid, phenylalanine, into simpler products. Phenylketonuria (PKU), which results from lack of the enzyme, causes permanent brain damage if not treated soon after birth. Many different types of human genetic diseases can be detected in embryos as young as 12 weeks; the procedure involves removal and testing of a small amount of fluid from around the embryo (called amniocentesis) or of tissue from the placenta (called chorionic villus sampling).
Gene therapy is based on modification of defective genotypes by adding functional genes made through recombinant DNA technology. Bioinformatics is being used to mine the human genome for gene products that might be candidates for designer pharmaceutical drugs.
Agriculture and animal husbandry apply genetic techniques to improve plants and animals. Breeding analysis and transgenic modification using recombinant DNA techniques are routinely used. Animal breeders use artificial insemination to propagate the genes of prize bulls. Prize cows can transmit their genes to hundreds of offspring by hormone treatment, which stimulates the release of many eggs that are collected, fertilized, and transplanted to foster mothers. Several types of mammals can be cloned, meaning that multiple identical copies can be produced of certain desirable types.
Plant geneticists use special techniques to produce new species, such as hybrid grains (i.e., produced by crossing wheat and rye), and plants resistant to destruction by insect and fungal pests.
Plant breeders use the techniques of budding and grafting to maintain desirable gene combinations originally obtained from crossbreeding. Transgenic plant cells can be made into plants by growing the cells on special hormones. The use of the chemical compound colchicine, which causes chromosomes to double in number, has resulted in many new varieties of fruits, vegetables, and flowers. Many transgenic lines of crop plants are commercially advantageous and are being introduced into the market.
Various industries employ geneticists; the brewing industry, for example, may use geneticists to improve the strains of yeast that produce alcohol. The pharmaceutical industry has developed strains of molds, bacteria, and other microorganisms high in antibiotic yield. Penicillin and cyclosporin from fungi, and streptomycin and ampicillin from bacteria, are some examples.
Biotechnology, based on recombinant DNA technology, is now extensively used in industry. Designer lines of transgenic bacteria, animals, or plants capable of manufacturing some commercial product are made and used routinely. Such products include pharmaceutical drugs and industrial chemicals such as citric acid.
Continue reading here:
Genetics - Methods in genetics | Britannica.com
- Trump and Musk are obsessed with genetics but theres no science behind their simplistic views - The Guardian - January 1st, 2025 [January 1st, 2025]
- From Stonehenge's origins to ice age baby genetics how well did you follow this year's top archaeology stories? - Livescience.com - January 1st, 2025 [January 1st, 2025]
- William Thilly, MIT genetics professor who invented Apple Jacks cereal, dies at 79 - The Boston Globe - January 1st, 2025 [January 1st, 2025]
- Is Atossa Genetics (ATOS) Stock Outpacing Its Medical Peers This Year? - Yahoo Finance - December 23rd, 2024 [December 23rd, 2024]
- With 54% ownership, Fulgent Genetics, Inc. (NASDAQ:FLGT) boasts of strong institutional backing - Yahoo Finance - December 23rd, 2024 [December 23rd, 2024]
- Using the PERC Database to Gather Insights on Epilepsy Genetics: Julie Ziobro, MD, PhD; John Schreiber, MD - Neurology Live - December 23rd, 2024 [December 23rd, 2024]
- Myriad Genetics' Breakthrough Cancer Test Named Top 10 Genomic Advance by Leading Journal - StockTitan - December 23rd, 2024 [December 23rd, 2024]
- Redecan Cannabis Launches New Limited-Edition Genetics and Expands Signature 'Wrapped & Redee' Pre-roll Line for the Holidays - Yahoo Finance - December 23rd, 2024 [December 23rd, 2024]
- Surprising yields, impressive genetics and an early harvest in 2024 Ohio Ag Net - Ohio's Country Journal and Ohio Ag Net - December 9th, 2024 [December 9th, 2024]
- Using music to help people with dementia; supporting breastfeeding radiologists; genetics and Type 2 diabetes; plus other news stories with VUMC... - December 9th, 2024 [December 9th, 2024]
- Genetics and suicideWhats the link? - Genetic Literacy Project - December 9th, 2024 [December 9th, 2024]
- Genetics is all fun and games for a Rochester card game creator - Rochester Post Bulletin - November 28th, 2024 [November 28th, 2024]
- Community engagement conduct for genetics and genomics research: a qualitative study of the experiences and perspectives of key stakeholders in Uganda... - November 28th, 2024 [November 28th, 2024]
- Dietary restriction interventions: lifespan benefits need resilience and are limited by immune compromise and genetics - Nature.com - November 28th, 2024 [November 28th, 2024]
- Texas A&M Researchers Uncover Secrets Of Horse Genetics For Conservation, Breeding - Texas A&M University Today - November 20th, 2024 [November 20th, 2024]
- Myriad Genetics Announces Prequel Prenatal Screening Can Now be Performed Eight Weeks into Pregnancy - GlobeNewswire - November 20th, 2024 [November 20th, 2024]
- Fulgent Genetics, Inc. (FLGT): Among the Best Genomics Stocks to Buy Right Now - Yahoo Finance - November 20th, 2024 [November 20th, 2024]
- Precision mutational scanning: your multipass to the future of genetics - Nature.com - November 20th, 2024 [November 20th, 2024]
- Advancements of Haploid Technology in Crops: New Horizons in Breeding and Genetics - Frontiers - November 20th, 2024 [November 20th, 2024]
- Toward advances in retinoblastoma genetics in Kenya - Nature.com - November 12th, 2024 [November 12th, 2024]
- CRISPR/Cas9 screens identify key host factors that enhance rotavirus reverse genetics efficacy and vaccine production - Nature.com - November 12th, 2024 [November 12th, 2024]
- Genetics Play Key Role in Animal Health and Welfare, Aggression and Handling - Farms.com - November 12th, 2024 [November 12th, 2024]
- Episode 174: Rudy Tanzi talks about genetics, aging and the hallmarks of Alzheimers - IHMC - October 26th, 2024 [October 26th, 2024]
- Ocuphire and Opus Genetics merge to develop IRD gene therapy - Pharmaceutical Technology - October 26th, 2024 [October 26th, 2024]
- The RD Fund Announces Ocuphire Pharma's Acquisition of Opus Genetics - PR Newswire - October 26th, 2024 [October 26th, 2024]
- The RD Fund Announces Ocuphire Pharma's Acquisition of Opus Genetics - WV News - October 26th, 2024 [October 26th, 2024]
- Faculty of Science | Protecting Canadas number one crop through genetics - UM Today - October 26th, 2024 [October 26th, 2024]
- Ocuphire and Opus Genetics merge to develop IRD gene therapy - Yahoo Finance - October 26th, 2024 [October 26th, 2024]
- Opinion | Fascinated by genetics? Where are the peas Trump made to fornicate? - The Washington Post - October 13th, 2024 [October 13th, 2024]
- Dietary restriction can extend lifespan but genetics matters more - Nature.com - October 13th, 2024 [October 13th, 2024]
- 'They have much stronger players' - Bangladesh assistant coach bizarrely blames 'genetics' for lack of six hitters in the team - Sporting News - October 13th, 2024 [October 13th, 2024]
- Medical Moment: Genetics and breast cancer with USA Health Genetic Counselor Cassie Gurganus - AOL - October 13th, 2024 [October 13th, 2024]
- Myriad Genetics Announces Five Research Collaborations to Study the Use of MRD Testing in Breast Cancer - Yahoo Finance - October 13th, 2024 [October 13th, 2024]
- An ideologically-based and misleading critique of how modern genetics is taught - Why Evolution Is True - October 13th, 2024 [October 13th, 2024]
- 2024 Mercedes-AMG C63 Review: Bold But Beholden to Its Genetics - Newsweek - October 2nd, 2024 [October 2nd, 2024]
- Myriad Genetics Announces Third Patent Granted for Molecular Residual Disease (MRD) with Early Priority Date - GlobeNewswire - October 2nd, 2024 [October 2nd, 2024]
- Digbi Health Launches an SEC-regulated Offering, Giving Millions the Opportunity to Invest in Groundbreaking Genetics and Gut Microbiome-based Care... - October 2nd, 2024 [October 2nd, 2024]
- The role of genetics in depression | Second Opinion - KCRW - September 23rd, 2024 [September 23rd, 2024]
- Tilapia genetics company Spring Genetics teams up with UK data firm to improve fish welfare - SeafoodSource - September 23rd, 2024 [September 23rd, 2024]
- Picky eating in kids is mostly due to genetics, study says - Motherly Inc. - September 23rd, 2024 [September 23rd, 2024]
- Research Shows That Fussy Eating In Children Is Mainly Influenced By Genetics - RTTNews - September 23rd, 2024 [September 23rd, 2024]
- Genetics colloquium: Chris Hittinger on the genomic making of metabolic niche breadth Sep. 11 - University of WisconsinMadison - September 15th, 2024 [September 15th, 2024]
- NIH Recognizes Yales Expertise in the Genetics of Rare Diseases - Yale School of Medicine - September 15th, 2024 [September 15th, 2024]
- SOPHiA GENETICS and AstraZeneca Collaborate to Further Expand Global Access to Liquid Biopsy Testing - PR Newswire - September 15th, 2024 [September 15th, 2024]
- Medicines race dilemma: What science says about genetics and health [PODCAST] - Kevin MD - September 15th, 2024 [September 15th, 2024]
- Researchers want to unlock genetics of the worlds tiniest animals - Popular Science - September 15th, 2024 [September 15th, 2024]
- Sophia Genetics and AstraZeneca collaborate to expand liquid biopsy test rollout - Medical Device Network - September 15th, 2024 [September 15th, 2024]
- From farm to future: Technology in genetics - National Hog Farmer - September 2nd, 2024 [September 2nd, 2024]
- Editorial: Plant biotechnology and genetics for sustainable agriculture and global food security - Frontiers - September 2nd, 2024 [September 2nd, 2024]
- NSF Grant Brings Genetics Opportunities to Students in Alabama - Government Technology - September 2nd, 2024 [September 2nd, 2024]
- SBUs Ben Luft brings Lyme expertise to seminal paper on bacterial genetics and evolution - TBR News Media - September 2nd, 2024 [September 2nd, 2024]
- SOPHiA GENETICS to Present at the 22nd Annual Morgan Stanley Healthcare Conference and 9th Annual TD Cowen FutureHealth Conference - PR Newswire - September 2nd, 2024 [September 2nd, 2024]
- Singapores National Precision Medicine (NPM) Programme Engages Oxford Nanopore to Advance Understanding of the Genetics of Singapores Multi-Ethnic... - August 5th, 2024 [August 5th, 2024]
- Fulgent Genetics Second Quarter 2024 Earnings: Beats Expectations - Yahoo Finance - August 5th, 2024 [August 5th, 2024]
- Stopped clinical trials give evidence for the value of genetics - Nature.com - August 5th, 2024 [August 5th, 2024]
- What is DSD? Sex genetics and Olympic boxing controversy - Washington Examiner - August 5th, 2024 [August 5th, 2024]
- Fulgent Genetics Q2: Core Revenue Grows, but Profitability Is Still an Issue - The Motley Fool - August 5th, 2024 [August 5th, 2024]
- Viewpoint: Challenging yet another scientifically silly article claiming Black domination of sprinting and long distance running has nothing to do... - August 5th, 2024 [August 5th, 2024]
- Texas Company Trying To Resurrect Woolly Mammoths To Improve Genetics Of Bison - Cowboy State Daily - August 5th, 2024 [August 5th, 2024]
- Genetics confirms Berbers reached North Africa over 20,000 years ago; Arabs came in 7th Century CE - Down To Earth Magazine - August 5th, 2024 [August 5th, 2024]
- Unlocking plant genetics with telomere-to-telomere genome assemblies - Nature.com - July 26th, 2024 [July 26th, 2024]
- Carlo Ancelotti claims Jude Bellingham's 'genetics' are main reason behind Real Madrid & England superstar's meteoric rise to the top - Goal.com - July 26th, 2024 [July 26th, 2024]
- Genetics-based modeling estimates Idaho's wolf population was 1,150 in summer 2023 - Idaho Fish and Game - July 26th, 2024 [July 26th, 2024]
- Lung Cancer Research Foundation Joins Lung Cancer Advocacy Organizations and 23andMe to Launch Lung Cancer Genetics Study to Advance Research - PR... - July 26th, 2024 [July 26th, 2024]
- Fulgent Genetics (FLGT) Scheduled to Post Earnings on Friday - Defense World - July 26th, 2024 [July 26th, 2024]
- SOPHIA GENETICS Announces Expanded Relationship with Canada-Based OncoHelix - Financial Times - July 26th, 2024 [July 26th, 2024]
- LG Household & Health Care publishes research into the genetics of skin tone - GlobalCosmeticsNews - July 26th, 2024 [July 26th, 2024]
- Estonians gave their DNA to science now they're learning their genetic secrets - Nature.com - June 27th, 2024 [June 27th, 2024]
- Genetic clues to depression revealed in large study - PsyPost - June 27th, 2024 [June 27th, 2024]
- Move Over, Genghis Khan. Many Other Men Left Huge Genetic Legacies - Smithsonian Magazine - June 27th, 2024 [June 27th, 2024]
- 3X4 Genetics Selected as Partner for Preeminent Cancer Research and Treatment Nonprofit, The Metabolic Terrain ... - BioSpace - June 27th, 2024 [June 27th, 2024]
- NIFA Invests $6M in Animal Breeding, Genetics and Genomics | NIFA - National Institute of Food and Agriculture - June 27th, 2024 [June 27th, 2024]
- Arbel Harpak: Pursuing the Next Frontier in Genetics | Dell Medical School - Dell Medical School - June 27th, 2024 [June 27th, 2024]
- Coffee habits are partly linked to genetics, UC San Diego researchers say - NBC San Diego - June 27th, 2024 [June 27th, 2024]
- Advanced genetic tools help researchers ID new neurodevelopmental syndrome - Yale News - June 27th, 2024 [June 27th, 2024]
- Nutritious diet may protect against type 2 diabetes, regardless of genetics - News-Medical.Net - June 27th, 2024 [June 27th, 2024]
- Genome-wide association study identifies host genetic variants influencing oral microbiota diversity and metabolic ... - Nature.com - June 27th, 2024 [June 27th, 2024]
- Unlock the Secrets of Your DNA with Advanced Genetic Testing - North Forty News - June 27th, 2024 [June 27th, 2024]
- Modern and precise: Using gene editing to change the blueprint of an organism - Beef Magazine - June 27th, 2024 [June 27th, 2024]
- The 'gene deserts' unravelling the mysteries of disease - BBC.com - June 27th, 2024 [June 27th, 2024]