Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions | Scientific Reports – Nature.com

Schulze-Makuch, D., & Irwin, L.N. Astrobiological potential of planetary bodies within the solar system. Life in the Universe: Springer; 2018. pp. 203228.

Cockell, C. S. et al. Habitability: A review. Astrobiology 16(1), 89117 (2016).

ADS Article Google Scholar

Sancho, L. G. et al. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7(3), 443454 (2007).

ADS Article Google Scholar

de La Torre, R. et al. Survival of lichens and bacteria exposed to outer space conditionsresults of the Lithopanspermia experiments. Icarus 208(2), 735748 (2010).

ADS Article Google Scholar

Rabbow, E. et al. The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. 14(1), 316 (2015).

ADS Article Google Scholar

Potts, M. Nostoc 465504 (Springer, 2000).

Google Scholar

De Vera, J.-P. et al. Limits of life and the habitability of Mars: The ESA space experiment BIOMEX on the ISS. Astrobiology 19(2), 145157 (2019).

ADS Article Google Scholar

Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: Current state of the science. Nat. Rev. Genet. 17(3), 175188 (2016).

CAS Article Google Scholar

Low, A. J., Koziol, A. G., Manninger, P. A., Blais, B. & Carrillo, C. D. ConFindr: Rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ 7, e6995 (2019).

Article Google Scholar

Liu, Y. & Walther-Antonio, M. Microfluidics: A new tool for microbial single cell analyses in human microbiome studies. Biomicrofluidics 11(6), 061501 (2017).

Article Google Scholar

Liu, Y. et al. The development of an effective bacterial single-cell lysis method suitable for whole genome amplification in microfluidic platforms. Micromachines. 9(8), 367 (2018).

Article Google Scholar

Liu, Y., Yao, J. & Walther-Antonio, M. Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform. Biomicrofluidics 13(3), 034109 (2019).

Article Google Scholar

Liu, Y., Jeraldo, P., Jang, J., Eckloff, B., Jen, J., & Walther-Antonio, M. Bacterial single cell whole transcriptome amplification in microfluidic platform shows putative gene expression heterogeneity. Anal. Chem. (2019).

Liu, Y. et al. Whole genome sequencing of cyanobacterium Nostoc sp CCCryo 23106 using microfluidic single cell technology. Iscience. 25(5), 4291 (2022).

Google Scholar

https://sourceforge.net/projects/bbmap/. BBMap (2019).

Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10), 16741676 (2015).

CAS Article Google Scholar

Laczny, C. C. et al. BusyBee Web: Metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 45(W1), W171W179 (2017).

CAS Article Google Scholar

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25(7), 10431055 (2015).

CAS Article Google Scholar

Parks, D. H. et al. Recovery of nearly 8000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2(11), 1533 (2017).

CAS Article Google Scholar

Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., & Chaumeil, P.-A., et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. (2018).

Davis, J. J. et al. The PATRIC bioinformatics resource center: Expanding data and analysis capabilities. Nucleic Acids Res. 48(D1), D606D612 (2020).

CAS PubMed Google Scholar

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., & DePristo, M.A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. (2010).

Ruden, D. M. et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program. SnpSift. Front. Genet. 3, 35 (2012).

PubMed Google Scholar

Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15(12), 496503 (2000).

CAS Article Google Scholar

Kllberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7(8), 1511 (2012).

Article Google Scholar

Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8 (2015).

Pullerits, K. et al. Impact of UV irradiation at full scale on bacterial communities in drinking water. NPJ Clean Water. 3(1), 110 (2020).

Article Google Scholar

Golden, S. S. Light-responsive gene expression in cyanobacteria. J. Bacteriol. 177(7), 1651 (1995).

CAS Article Google Scholar

Dachev, T. P. et al. Overview of the ISS radiation environment observed during the ESA EXPOSE-R2 mission in 20142016. Space Weather 15(11), 14751489 (2017).

ADS Article Google Scholar

Sinha, R. P., Klisch, M., Helbling, E. W. & Hder, D.-P. Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. J. Photochem. Photobiol. B 60(23), 129135 (2001).

CAS Article Google Scholar

Tamaru, Y., Takani, Y., Yoshida, T. & Sakamoto, T. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71(11), 73277333 (2005).

ADS CAS Article Google Scholar

Guilhabert, M. R. & Kirkpatrick, B. C. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute to X fastidiosa biofilm maturation and colonization and attenuate virulence. Mol. Plant Microb. Interact. 18(8), 856868 (2005).

CAS Article Google Scholar

Nixon, R. A. & Sihag, R. K. Neurofilament phosphorylation: A new look at regulation and function. Trends Neurosci. 14(11), 501506 (1991).

CAS Article Google Scholar

Rabbow, E. et al. EXPOSE-R2: The astrobiological ESA mission on board of the International Space Station. Front. Microbiol. 8, 1533 (2017).

Article Google Scholar

Klementiev, K. E. et al. Radioprotective role of cyanobacterial phycobilisomes. Biochim. Biophys. Acta 2, 121128 (1860).

Google Scholar

Mosca, C. et al. Revival of anhydrobiotic cyanobacterium biofilms exposed to space vacuum and prolonged dryness: implications for future missions beyond low Earth orbit. Astrobiology 21(5), 541550 (2021).

ADS CAS Article Google Scholar

Kawaguchi, Y. et al. DNA damage and survival time course of deinococcal cell pellets during 3 years of exposure to outer space. Front. Microbiol. 11, 2050 (2020).

Article Google Scholar

Gladyshev, E. & Meselson, M. Extreme resistance of bdelloid rotifers to ionizing radiation. Proc. Natl. Acad. Sci. 105(13), 51395144 (2008).

ADS CAS Article Google Scholar

Zhu, Q., Niu, Y., Gundry, M. & Zong, C. Single-cell damagenome profiling unveils vulnerable genes and functional pathways in human genome toward DNA damage. Sci. Adv. 7(27), 3329 (2021).

ADS Article Google Scholar

Beaven, G. H., Holiday, E. R., Johnson, E. A., Ellis, B. & Petrow, V. The chemistry of anti-pernicious anaemia factors: Part VI: The mode of combination of component alpha in vitamin B12. J. Pharm. Pharmacol. 2(12), 944955 (1950).

CAS PubMed Google Scholar

Sinha, R., Kumar, H. D., Kumar, A. & Hder, D. Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozool. 34, 187 (1995).

CAS Google Scholar

Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17(11), 704714 (2016).

CAS Article Google Scholar

Aleshkin, G. I., Kadzhaev, K. V. & Markov, A. P. High and low UV-dose responses in SOS-induction of the precise excision of transposons tn1, Tn5 and Tn10 in Escherichia coli. Mutat. Res. 401(12), 179191 (1998).

CAS Article Google Scholar

Zhu, Y., Neeman, T., Yap, V. B. & Huttley, G. A. Statistical methods for identifying sequence motifs affecting point mutations. Genetics 205(2), 843856 (2017).

CAS Article Google Scholar

Knight, R. D., Freeland, S. J. & Landweber, L. F. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol. 2(4), 10 (2001).

Article Google Scholar

Continued here:
Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions | Scientific Reports - Nature.com

Related Posts