Scientists generate a new plasmid-based reverse genetics system for rotaviruses – Phys.Org

February 24, 2017 Generation of recombinant rotavirus from cloned cDNA. Credit: Osaka University

Rotaviruses are the most common cause of severe diarrhea and kill hundreds of thousands of infants a year. Although current vaccines are effective in preventing aggravation of rotaviruses, the development of more effective vaccines at lower cost is expected. Technology cannot study well how rotaviruses invade and replicate in a cell. To identify which genes are crucial for the infection of rotaviruses, scientists at the Research Institute for Microbial Diseases at Osaka University report a new plasmid-based reverse genetics system. The study can be read in Proceedings of the National Academy of Sciences of the United States of America.

"Reverse genetics allows us to generate artificially engineered viruses", says Associate Professor Takeshi Kobayashi, who led the study. "Using reverse genetics, we can mutate a gene and see its effects on the virus," he added.

Reverse genetics systems have been developed for a wide number of viruses to study the conditions in which a virus thrives, but systems for multiple-segmented RNA-based viruses like rotaviruses have proven more difficult. Kobayashi's group solved this problem by including two viral proteins, FAST and VV capping enzyme, into their plasmid-based system. Taking advantage, the researchers tested their system by mutating a single protein of rotaviruses, NSP1, finding that they could decrease viral replication.

Through comprehensive testing of all proteins in future studies, Kobayashi expects to find the key determinants that make rotaviruses a severe pubic threat. "We could modify the propagation and pathogenicity of the rotavirus", he said.

Kobayashi is optimistic about how plasmid-based reverse genetics system will bring new innovations to combat rotaviruses. "Because no one could synthesize rotaviruses artificially, less is known about the replication and pathogenesis." He expects the system will increase the number of labs working on rotaviruses and lead to more effective vaccines.

Explore further: Researchers find chink in the armor of viral 'tummy bug'

More information: Yuta Kanai et al. Entirely plasmid-based reverse genetics system for rotaviruses, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1618424114

Researchers at Griffith University's Institute for Glycomics in collaboration with colleagues at the University of Melbourne have moved a step closer to identifying a broad spectrum treatment for the dreaded 'viral tummy ...

Researchers from Griffith University's Institute for Glycomics and the University of Melbourne have significantly advanced understanding of a virus that kills up to half a million children each year.

A five-year research partnership between the London School of Hygiene & Tropical Medicine and the University of California, Los Angeles (UCLA) has revealed the atomic-level structure of the bluetongue virus (BTV), a disease ...

Vaccine developers have successfully protected mice against Zika by injecting synthetic messenger RNA that encodes for virus proteins into the animals. The cells of the mice then build parts of the virus, training the immune ...

Our immunosensory system detects virus such as influenza via specific characteristics of viral ribonucleic acid. Previously, it was unclear how the immune system prevents viruses from simply donning molecular camouflage in ...

Using nanotechnology and a patented signal enhancing technique developed at the University of Georgia, UGA researchers have discovered a rapid, sensitive and cost-effective method to detect and identify a number of rotavirus ...

Bioengineers at the University of California San Diego have developed a new tool to identify interactions between RNA and DNA molecules. The tool, called MARGI (Mapping RNA Genome Interactions), is the first technology that's ...

Small "bubbles" frequently form on membranes of cells and are taken up into their interior. The process involves EHD proteins - a focus of research by Prof. Oliver Daumke of the MDC. He and his team have now shed light on ...

Scientists from The University of Western Australia have identified a tiny mutation in plants that can influence how well a plant recovers from stressful conditions, and ultimately impact a plant's survival.

The first skirmish was fought last week in what could be a long war over a revolutionary patent on gene-editing technology, with colossal amounts of money at stake.

Waterhemp has been locked in an arms race with farmers for decades. Nearly every time farmers attack the weed with a new herbicide, waterhemp becomes resistant to it, reducing or eliminating the efficacy of the chemical. ...

The last Neanderthal died 40,000 years ago, but much of their genome lives on, in bits and pieces, through modern humans. The impact of Neanderthals' genetic contribution has been uncertain: Do these snippets affect our genome's ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read the rest here:
Scientists generate a new plasmid-based reverse genetics system for rotaviruses - Phys.Org

Related Posts