Seedling root system adaptation to water availability during maize domestication and global expansion – Nature.com

Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840852 (2013).

Article CAS PubMed Google Scholar

Hake, S. & Ross-Ibarra, J. Genetic, evolutionary and plant breeding insights from the domestication of maize. eLife 4, e05861 (2015).

Article PubMed PubMed Central Google Scholar

Yang, N. et al. Two teosintes made modern maize. Science 382, 1013 (2023).

Article Google Scholar

Ross-Ibarra, J. & Piperno, D. Maize moving. Figshare https://doi.org/10.6084/m9.figshare.12781307.v1 (2020).

Romero Navarro, J. A. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49, 476480 (2017).

Article CAS PubMed Google Scholar

Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357, 512515 (2017).

Article CAS PubMed Google Scholar

Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 9497 (2018).

Article CAS PubMed Google Scholar

Eshel, A. & Beeckman, T. (eds) Plant roots: the hidden half (CRC Press, 2013).

Hochholdinger, F., Yu, P. & Marcon, C. Genetic control of root system development in maize. Trends Plant Sci. 23, 7988 (2018).

Article CAS PubMed Google Scholar

Lopez-Valdivia, I. et al. Gradual domestication of root traits in the earliest maize from Tehuacn. Proc. Natl Acad. Sci. USA 119, e2110245119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Yu, P., Gutjahr, C., Li, C. & Hochholdinger, F. Genetic control of lateral root formation in cereals. Trends Plant Sci. 21, 951961 (2016).

Article CAS PubMed Google Scholar

Golan, G., Hendel, E., Mndez Espitia, G. E., Schwartz, N. & Peleg, Z. Activation of seminal root primordia during wheat domestication reveals underlying mechanisms of plant resilience. Plant Cell Environ. 41, 755766 (2018).

Article CAS PubMed Google Scholar

Perkins, C. & Lynch, J. P. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings. Ann. Bot. 128, 453468 (2021).

Article CAS PubMed PubMed Central Google Scholar

Hochholdinger, F., Woll, K., Sauer, M. & Dembinsky, D. Genetic dissection of root formation in maize (Zea mays) reveals roottype specific developmental programmes. Ann. Bot. 93, 359368 (2004).

Article CAS PubMed PubMed Central Google Scholar

Burton, L., Brown, K. M. & Lynch, J. P. Phenotypic diversity of root anatomical and architectural traits in Zea species. Crop Sci. 53, 10421055 (2013).

Article Google Scholar

Taramino, G. et al. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and postembryonic shootborne root initiation. Plant J. 50, 649659 (2007).

Article CAS PubMed Google Scholar

Merrill, W. L. et al. The diffusion of maize to the southwestern United States and its impact. Proc. Natl Acad. Sci. USA 106, 2101921026 (2009).

Article CAS PubMed PubMed Central Google Scholar

da Fonseca, R. R. et al. The origin and evolution of maize in the Southwestern United States. Nat. Plants 1, 14003 (2015).

Article PubMed Google Scholar

Doebley, J. F., Goodman, M. & Stuber, C. W. Exceptional genetic divergence of northern flint corn. Am. J. Bot. 73, 6469 (1986).

Article PubMed Google Scholar

Rebourg, C. et al. Maize introduction into Europe: the history reviewed in the light of molecular data. Theor. Appl. Genet. 106, 895903 (2003).

Article CAS PubMed Google Scholar

Hu, Y. et al. Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nat. Commun. 12, 1227 (2021).

Article CAS PubMed PubMed Central Google Scholar

Salvi, S. et al. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol. 11, 4 (2011).

Article CAS PubMed PubMed Central Google Scholar

Osthoff, A. et al. Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genom. 20, 325 (2019).

Article Google Scholar

Zhou, X. et al. CPlantBox, a whole-plant modelling framework for the simulation of water- and carbon-related processes. in silico Plants 2, diaa001 (2020).

Article CAS Google Scholar

Ahmed, M. A., Zarebanadkouki, M., Kaestner, A. & Carminati, A. Measurements of water uptake of maize roots: the key function of lateral roots. Plant Soil 398, 5977 (2016).

Article CAS Google Scholar

Abdalla, M. et al. Stomatal closure during water deficit is controlled by below-ground hydraulics. Ann. Bot. 129, 161170 (2022).

Article PubMed Google Scholar

Cai, G., Ahmed, M. A., Abdalla, M. & Carminati, A. Root hydraulic phenotypes impacting water uptake in drying soils. Plant Cell Environ. 45, 650663 (2022).

Article CAS PubMed PubMed Central Google Scholar

Li, C. et al. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nat. Plants 8, 750763 (2022).

Article CAS PubMed Google Scholar

Marcon, C. et al. BonnMu: a sequence-indexed resource of transposon-induced maize mutations for functional genomics studies. Plant Physiol. 184, 620631 (2020).

Article CAS PubMed PubMed Central Google Scholar

Qiu, X. et al. Genome-wide identification of HD-ZIP transcription factors in maize and their regulatory roles in promoting drought tolerance. Physiol. Mol. Biol. Plants 28, 425437 (2022).

Article CAS PubMed PubMed Central Google Scholar

Salvi, S. et al. Registration of Gasp Flint 1.1.1, a small-size early-flowering maize inbred line. J. Plant Registrat. 16, 152161 (2021).

Article Google Scholar

Giehl, R. F. & von Wirn, N. Root nutrient foraging. Plant Physiol. 166, 509517 (2014).

Article PubMed PubMed Central Google Scholar

Tenaillon, M. I. & Charcosset, A. A European perspective on maize history. Biologies 334, 221228 (2011).

Article PubMed Google Scholar

Liu, Y. et al. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590, 600605 (2021).

Article CAS PubMed Google Scholar

Jgermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873885 (2021).

Article PubMed Google Scholar

Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187191 (2023).

Article CAS PubMed Google Scholar

Schneider, H. M. et al. Multiseriate cortical sclerenchyma enhance root penetration in compacted soils. Proc. Natl Acad. Sci. USA 118, e2012087118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Wang, X. et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genetics 48, 12331241 (2016).

Article CAS PubMed Google Scholar

Grando, S. & Ceccarelli, S. Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86, 7380 (1995).

Article Google Scholar

Orosa-Puente, B. et al. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 362, 14071410 (2018).

Article CAS PubMed Google Scholar

Mehra, P. et al. Hydraulic flux-responsive hormone redistribution determines root branching. Science 378, 762768 (2022).

Article CAS PubMed Google Scholar

Maurel, C. & Nacry, P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat. Plants 6, 744749 (2020).

Article PubMed Google Scholar

Liu, K. et al. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165, 21172128 (2003).

Article CAS PubMed PubMed Central Google Scholar

Gouesnard, B. et al. Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Theor. Appl. Genet. 130, 21652189 (2017).

Article CAS PubMed Google Scholar

Yu, P. et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 481499 (2021).

Article CAS PubMed Google Scholar

Metzner, R. et al. In vivo imaging and quantification of carbon tracer dynamics in nodulated root systems of pea plants. Plants 11, 632 (2022).

Article CAS PubMed PubMed Central Google Scholar

Streun, M. et al., PhenoPET: a dedicated PET scanner for plant research based on digital SiPMs (DPCs). In IEEE Medical Imaging Conference (IEEE, 2014).

Hinz, C. Accurate quantitative and dynamic PET imaging with the phenoPET Scanner for plant studies. PhD dissertation, University of Wuppertal (2021).

Scheins, J. J. et al. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation. Phys. Med. Biol. 60, 93499375 (2015).

Article CAS PubMed Google Scholar

Bauer, F. M. et al. Development and validation of a deep learning based automated minirhizotron image analysis pipeline. Plant Phenoics 2022, 9758532 (2022).

Google Scholar

Smith, A. G. et al. RootPainter: deep learning segmentation of biological images with corrective annotation. New Phytol. 236, 774791 (2022).

Article CAS PubMed PubMed Central Google Scholar

Leitner, D. et al. Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiol. 164, 2435 (2014).

Article CAS PubMed Google Scholar

Read more:
Seedling root system adaptation to water availability during maize domestication and global expansion - Nature.com

Related Posts