Image credit: Depositphotos
This article is part ofDemystifying AI, a series of posts that (try to) disambiguate the jargon and myths surrounding AI.
Last week, Lee Se-dol, the South Korean Go champion who lost in a historical matchup against DeepMinds artificial intelligence algorithm AlphaGo in 2016, declared his retirement from professional play.
With the debut of AI in Go games, Ive realized that Im not at the top even if I become the number one through frantic efforts, Lee told theYonhap news agency. Even if I become the number one, there is an entity that cannot be defeated.
Predictably, Se-dols comments quickly made the rounds across prominent tech publications, some of them using sensational headlines with AI dominance themes.
Since the dawn of AI, games have been one of the main benchmarks to evaluate the efficiency of algorithms. And thanks to advances in deep learning and reinforcement learning, AI researchers are creating programs that can master very complicated games and beat the most seasoned players across the world. Uninformed analysts have been picking up on these successes to suggest that AI is becoming smarter than humans.
But at the same time, contemporary AI fails miserably at some of the most basic that every human can perform.
This begs the question, does mastering a game prove anything? And if not, how can you measure the level of intelligence of an AI system?
Take the following example. In the picture below, youre presented with three problems and their solution. Theres also a fourth task that hasnt been solved. Can you guess the solution?
Youre probably going to think that its very easy. Youll also be able to solve different variations of the same problem with multiple walls, and multiple lines, and lines of different colors, just by seeing these three examples. But currently, theres no AI system, including the ones being developed at the most prestigious research labs, that can learn to solve such a problem with so few examples.
The above example is from The Measure of Intelligence, a paper by Franois Chollet, the creator of Keras deep learning library. Chollet published this paper a few weeks before Le-sedol declared his retirement. In it, he provided many important guidelines on understanding and measuring intelligence.
Ironically, Chollets paper did not receive a fraction of the attention it needs. Unfortunately, the media is more interested in covering exciting AI news that gets more clicks. The 62-page paper contains a lot of invaluable information and is a must-read for anyone who wants to understand the state of AI beyond the hype and sensation.
But I will do my best to summarize the key recommendations Chollet makes on measuring AI systems and comparing their performance to that of human intelligence.
The contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks, such as board games and video games, Chollet writes, adding that solely measuring skill at any given task falls short of measuring intelligence.
In fact, the obsession with optimizing AI algorithms for specific tasks has entrenched the community in narrow AI. As a result, work in AI has drifted away from the original vision of developing thinking machines that possess intelligence comparable to that of humans.
Although we are able to engineer systems that perform extremely well on specific tasks, they have still stark limitations, being brittle, data-hungry, unable to make sense of situations that deviate slightly from their training data or the assumptions of their creators, and unable to repurpose themselves to deal with novel tasks without significant involvement from human researchers, Chollet notes in the paper.
Chollets observations are in line with those made by other scientists on the limitations and challenges of deep learning systems. These limitations manifest themselves in many ways:
Heres an example: OpenAIs Dota-playing neural networks needed 45,000 years worth of gameplay to reach a professional level. The AI is also limited in the number of characters it can play, and the slightest change to the game rules will result in a sudden drop in its performance.
The same can be seen in other fields, such as self-driving cars. Despite millions of hours of road experience, the AI algorithms that power autonomous vehicles can make stupid mistakes, such as crashing into lane dividers or parked firetrucks.
One of the key challenges that the AI community has struggled with is defining intelligence. Scientists have debated for decades on providing a clear definition that allows us to evaluate AI systems and determine what is intelligent or not.
Chollet borrows the definition by DeepMind cofounder Shane Legg and AI scientist Marcus Hutter: Intelligence measures an agents ability to achieve goals in a wide range of environments.
Key here is achieve goals and wide range of environments. Most current AI systems are pretty good at the first part, which is to achieve very specific goals, but bad at doing so in a wide range of environments. For instance, an AI system that can detect and classify objects in images will not be able to perform some other related task, such as drawing images of objects.
Chollet then examines the two dominant approaches in creating intelligence systems: symbolic AI and machine learning.
Early generations of AI research focused on symbolic AI, which involves creating an explicit representation of knowledge and behavior in computer programs. This approach requires human engineers to meticulously write the rules that define the behavior of an AI agent.
It was then widely accepted within the AI community that the problem of intelligence would be solved if only we could encode human skills into formal rules and encode human knowledge into explicit databases, Chollet observes.
But rather than being intelligent by themselves, these symbolic AI systems manifest the intelligence of their creators in creating complicated programs that can solve specific tasks.
The second approach, machine learning systems, is based on providing the AI model with data from the problem space and letting it develop its own behavior. The most successful machine learning structure so far is artificial neural networks, which are complex mathematical functions that can create complex mappings between inputs and outputs.
For instance, instead of manually coding the rules for detecting cancer in x-ray slides, you feed a neural network with many slides annotated with their outcomes, a process called training. The AI examines the data and develops a mathematical model that represents the common traits of cancer patterns. It can then process new slides and outputs how likely it is that the patients have cancer.
Advances in neural networks and deep learning have enabled AI scientists to tackle many tasks that were previously very difficult or impossible with classic AI, such as natural language processing, computer vision and speech recognition.
Neural networkbased models, also known as connectionist AI, are named after their biological counterparts. They are based on the idea that the mind is a blank slate (tabula rasa) that turns experience (data) into behavior. Therefore, the general trend in deep learning has become to solve problems by creating bigger neural networks and providing them with more training data to improve their accuracy.
Chollet rejects both approaches because none of them has been able to create generalized AI that is flexible and fluid like the human mind.
We see the world through the lens of the tools we are most familiar with. Today, it is increasingly apparent that both of these views of the nature of human intelligenceeither a collection of special-purpose programs or a general-purpose Tabula Rasaare likely incorrect, he writes.
Truly intelligent systems should be able to develop higher-level skills that can span across many tasks. For instance, an AI program that masters Quake 3 should be able to play other first-person shooter games at a decent level. Unfortunately, the best that current AI systems achieve is local generalization, a limited maneuver room within their own narrow domain.
In his paper, Chollet argues that the generalization or generalization power for any AI system is its ability to handle situations (or tasks) that differ from previously encountered situations.
Interestingly, this is a missing component of both symbolic and connectionist AI. The former requires engineers to explicitly define its behavioral boundary and the latter requires examples that outline its problem-solving domain.
Chollet also goes further and speaks of developer-aware generalization, which is the ability of an AI system to handle situations that neither the system nor the developer of the system have encountered before.
This is the kind of flexibility you would expect from a robo-butler that could perform various chores inside a home without having explicit instructions or training data on them. An example is Steve Wozniaks famous coffee test, in which a robot would enter a random house and make coffee without knowing in advance the layout of the home or the appliances it contains.
Elsewhere in the paper, Chollet makes it clear that AI systems that cheat their way toward their goal by leveraging priors (rules) and experience (data) are not intelligent. For instance, consider Stockfish, the best rule-base chess-playing program. Stockfish, an open-source project, is the result of contributions from thousands of developers who have created and fine-tuned tens of thousands of rules. A neural networkbased example is AlphaZero, the multi-purpose AI that has conquered several board games by playing them millions of times against itself.
Both systems have been optimized to perform a specific task by making use of resources that are beyond the capacity of the human mind. The brightest human cant memorize tens of thousands of chess rules. Likewise, no human can play millions of chess games in a lifetime.
Solving any given task with beyond-human level performance by leveraging either unlimited priors or unlimited data does not bring us any closer to broad AI or general AI, whether the task is chess, football, or any e-sport, Chollet notes.
This is why its totally wrong to compare Deep Blue, Alpha Zero, AlphaStar or any other game-playing AI with human intelligence.
Likewise, other AI models, such as Aristo, the program that can pass an eighth-grade science test, does not possess the same knowledge as a middle school student. It owes its supposed scientific abilities to the huge corpora of knowledge it was trained on, not its understanding of the world of science.
(Note: Some AI researchers, such as computer scientist Rich Sutton, believe that the true direction for artificial intelligence research should be methods that can scale with the availability of data and compute resources.)
In the paper, Chollet presents the Abstraction Reasoning Corpus (ARC), a dataset intended to evaluate the efficiency of AI systems and compare their performance with that of human intelligence. ARC is a set of problem-solving tasks that tailored for both AI and humans.
One of the key ideas behind ARC is to level the playing ground between humans and AI. It is designed so that humans cant take advantage of their vast background knowledge of the world to outmaneuver the AI. For instance, it doesnt involve language-related problems, which AI systems have historically struggled with.
On the other hand, its also designed in a way that prevents the AI (and its developers) from cheating their way to success. The system does not provide access to vast amounts of training data. As in the example shown at the beginning of this article, each concept is presented with a handful of examples.
The AI developers must build a system that can handle various concepts such as object cohesion, object persistence, and object influence. The AI system must also learn to perform tasks such as scaling, drawing, connecting points, rotating and translating.
Also, the test dataset, the problems that are meant to evaluate the intelligence of the developed system, are designed in a way that prevents developers from solving the tasks in advance and hard-coding their solution in the program. Optimizing for evaluation sets is a popular cheating method in data science and machine learning competitions.
According to Chollet, ARC only assesses a general form of fluid intelligence, with a focus on reasoning and abstraction. This means that the test favors program synthesis, the subfield of AI that involves generating programs that satisfy high-level specifications. This approach is in contrast with current trends in AI, which are inclined toward creating programs that are optimized for a limited set of tasks (e.g., playing a single game).
In his experiments with ARC, Chollet has found that humans can fully solve ARC tests. But current AI systems struggle with the same tasks. To the best of our knowledge, ARC does not appear to be approachable by any existing machine learning technique (including Deep Learning), due to its focus on broad generalization and few-shot learning, Chollet notes.
While ARC is a work in progress, it can become a promising benchmark to test the level of progress toward human-level AI. We posit that the existence of a human-level ARC solver would represent the ability to program an AI from demonstrations alone (only requiring a handful of demonstrations to specify a complex task) to do a wide range of human-relatable tasks of a kind that would normally require human-level, human-like fluid intelligence, Chollet observes.
More:
Artificial intelligence: How to measure the I in AI - TechTalks
- BBVA Foundation awards the psychologists who changed the way we understand and predict human behavior - WebWire - March 15th, 2025 [March 15th, 2025]
- Human behavior is driven by fifteen key motives - Earth.com - February 25th, 2025 [February 25th, 2025]
- Nature Human Behavior is back, this time touting allyship - Why Evolution Is True - February 25th, 2025 [February 25th, 2025]
- 30 Times Courtrooms Became The Stage For The Strangest Human Behavior - Bored Panda - February 3rd, 2025 [February 3rd, 2025]
- The Impact of AI on Human Behavior: Insights and Implications - iTMunch - January 23rd, 2025 [January 23rd, 2025]
- Disturbing Wildlife Isnt Fun: IFS Parveen Kaswan Raises Concern Over Human Behavior in Viral Clip - Indian Masterminds - January 15th, 2025 [January 15th, 2025]
- The interplay of time and space in human behavior: a sociological perspective on the TSCH model - Nature.com - January 1st, 2025 [January 1st, 2025]
- Thinking Slowly: The Paradoxical Slowness of Human Behavior - Caltech - December 23rd, 2024 [December 23rd, 2024]
- From smog to crime: How air pollution is shaping human behavior and public safety - The Times of India - December 9th, 2024 [December 9th, 2024]
- The Smell Of Death Has A Strange Influence On Human Behavior - IFLScience - October 26th, 2024 [October 26th, 2024]
- "WEIRD" in psychology literature oversimplifies the global diversity of human behavior. - Psychology Today - October 2nd, 2024 [October 2nd, 2024]
- Scientists issue warning about increasingly alarming whale behavior due to human activity - Orcasonian - September 23rd, 2024 [September 23rd, 2024]
- Does AI adoption call for a change in human behavior? - Fast Company - July 26th, 2024 [July 26th, 2024]
- Dogs can smell human stress and it alters their own behavior, study reveals - New York Post - July 26th, 2024 [July 26th, 2024]
- Trajectories of brain and behaviour development in the womb, at birth and through infancy - Nature.com - June 18th, 2024 [June 18th, 2024]
- AI model predicts human behavior from our poor decision-making - Big Think - June 18th, 2024 [June 18th, 2024]
- ZkSync defends Sybil measures as Binance offers own ZK token airdrop - TradingView - June 18th, 2024 [June 18th, 2024]
- On TikTok, Goldendoodles Are People Trapped in Dog Bodies - The New York Times - June 18th, 2024 [June 18th, 2024]
- 10 things only introverts find irritating, according to psychology - Hack Spirit - June 18th, 2024 [June 18th, 2024]
- 32 animals that act weirdly human sometimes - Livescience.com - May 24th, 2024 [May 24th, 2024]
- NBC Is Using Animals To Push The LGBT Agenda. Here Are 5 Abhorrent Animal Behaviors Humans Shouldn't Emulate - The Daily Wire - May 24th, 2024 [May 24th, 2024]
- New study examines the dynamics of adaptive autonomy in human volition and behavior - PsyPost - May 24th, 2024 [May 24th, 2024]
- 30000 years of history reveals that hard times boost human societies' resilience - Livescience.com - May 12th, 2024 [May 12th, 2024]
- Kingdom of the Planet of the Apes Actors Had Trouble Reverting Back to Human - CBR - May 12th, 2024 [May 12th, 2024]
- The need to feel safe is a core driver of human behavior. - Psychology Today - April 15th, 2024 [April 15th, 2024]
- AI learned how to sway humans by watching a cooperative cooking game - Science News Magazine - March 29th, 2024 [March 29th, 2024]
- We can't combat climate change without changing minds. This psychology class explores how. - Northeastern University - March 11th, 2024 [March 11th, 2024]
- Bees Reveal a Human-Like Collective Intelligence We Never Knew Existed - ScienceAlert - March 11th, 2024 [March 11th, 2024]
- Franciscan AI expert warns of technology becoming a 'pseudo-religion' - Detroit Catholic - March 11th, 2024 [March 11th, 2024]
- Freshwater resources at risk thanks to human behavior - messenger-inquirer - March 11th, 2024 [March 11th, 2024]
- Astrocytes Play Critical Role in Regulating Behavior - Neuroscience News - March 11th, 2024 [March 11th, 2024]
- Freshwater resources at risk thanks to human behavior - Sunnyside Sun - March 11th, 2024 [March 11th, 2024]
- Freshwater resources at risk thanks to human behavior - Blue Mountain Eagle - March 11th, 2024 [March 11th, 2024]
- 7 Books on Human Behavior - Times Now - March 11th, 2024 [March 11th, 2024]
- Euphemisms increasingly used to soften behavior that would be questionable in direct language - Norfolk Daily News - February 29th, 2024 [February 29th, 2024]
- Linking environmental influences, genetic research to address concerns of genetic determinism of human behavior - Phys.org - February 29th, 2024 [February 29th, 2024]
- Emerson's Insight: Navigating the Three Fundamental Desires of Human Nature - The Good Men Project - February 29th, 2024 [February 29th, 2024]
- Dogs can recognize a bad person and there's science to prove it. - GOOD - February 29th, 2024 [February 29th, 2024]
- What Is Organizational Behavior? Everything You Need To Know - MarketWatch - February 4th, 2024 [February 4th, 2024]
- Overcoming 'Otherness' in Scientific Research Commentary in Nature Human Behavior USA - English - USA - PR Newswire - February 4th, 2024 [February 4th, 2024]
- "Reichman University's behavioral economics program: Navigating human be - The Jerusalem Post - January 19th, 2024 [January 19th, 2024]
- Of trees, symbols of humankind, on Tu BShevat - The Jewish Star - January 19th, 2024 [January 19th, 2024]
- Tapping Into The Power Of Positive Psychology With Acclaimed Expert Niyc Pidgeon - GirlTalkHQ - January 19th, 2024 [January 19th, 2024]
- Don't just make resolutions, 'be the architect of your future self,' says Stanford-trained human behavior expert - CNBC - December 31st, 2023 [December 31st, 2023]
- Never happy? Humans tend to imagine how life could be better : Short Wave - NPR - December 31st, 2023 [December 31st, 2023]
- People who feel unhappy but hide it well usually exhibit these 9 behaviors - Hack Spirit - December 31st, 2023 [December 31st, 2023]
- If you display these 9 behaviors, you're being passive aggressive without realizing it - Hack Spirit - December 31st, 2023 [December 31st, 2023]
- Men who are relationship-oriented by nature usually display these 9 behaviors - Hack Spirit - December 31st, 2023 [December 31st, 2023]
- A look at the curious 'winter break' behavior of ChatGPT-4 - ReadWrite - December 14th, 2023 [December 14th, 2023]
- Neuroscience and Behavior Major (B.S.) | College of Liberal Arts - UNH's College of Liberal Arts - December 14th, 2023 [December 14th, 2023]
- The positive health effects of prosocial behaviors | News | Harvard ... - HSPH News - October 27th, 2023 [October 27th, 2023]
- The valuable link between succession planning and skills - Human Resource Executive - October 27th, 2023 [October 27th, 2023]
- Okinawa's ants show reduced seasonal behavior in areas with more human development - Phys.org - October 27th, 2023 [October 27th, 2023]
- How humans use their sense of smell to find their way | Penn Today - Penn Today - October 27th, 2023 [October 27th, 2023]
- Wrestling With Evil in the World, or Is It Something Else? - Psychiatric Times - October 27th, 2023 [October 27th, 2023]
- Shimmying like electric fish is a universal movement across species - Earth.com - October 27th, 2023 [October 27th, 2023]
- Why do dogs get the zoomies? - Care.com - October 27th, 2023 [October 27th, 2023]
- How Stuart Robinson's misconduct went overlooked for years - Washington Square News - October 27th, 2023 [October 27th, 2023]
- Whatchamacolumn: Homeless camps back in the news - News-Register - October 27th, 2023 [October 27th, 2023]
- Stunted Growth in Infants Reshapes Brain Function and Cognitive ... - Neuroscience News - October 27th, 2023 [October 27th, 2023]
- Social medias role in modeling human behavior, societies - kuwaittimes - October 27th, 2023 [October 27th, 2023]
- The gift of reformation - Living Lutheran - October 27th, 2023 [October 27th, 2023]
- After pandemic, birds are surprisingly becoming less fearful of humans - Study Finds - October 27th, 2023 [October 27th, 2023]
- Nick Treglia: The trouble with fairness and the search for truth - 1819 News - October 27th, 2023 [October 27th, 2023]
- Science has an answer for why people still wave on Zoom - Press Herald - October 27th, 2023 [October 27th, 2023]
- Orcas are learning terrifying new behaviors. Are they getting smarter? - Livescience.com - October 27th, 2023 [October 27th, 2023]
- Augmenting the Regulatory Worker: Are We Making Them Better or ... - BioSpace - October 27th, 2023 [October 27th, 2023]
- What "The Creator", a film about the future, tells us about the present - InCyber - October 27th, 2023 [October 27th, 2023]
- WashU Expert: Some parasites turn hosts into 'zombies' - The ... - Washington University in St. Louis - October 27th, 2023 [October 27th, 2023]
- Is secondhand smoke from vapes less toxic than from traditional ... - Missouri S&T News and Research - October 27th, 2023 [October 27th, 2023]
- How apocalyptic cults use psychological tricks to brainwash their ... - Big Think - October 27th, 2023 [October 27th, 2023]
- Human action pushing the world closer to environmental tipping ... - Morung Express - October 27th, 2023 [October 27th, 2023]
- What We Get When We Give | Harvard Medicine Magazine - Harvard University - October 27th, 2023 [October 27th, 2023]
- Psychological Anime: 12 Series You Should Watch - But Why Tho? - October 27th, 2023 [October 27th, 2023]
- Roosters May Recognize Their Reflections in Mirrors, Study Suggests - Smithsonian Magazine - October 27th, 2023 [October 27th, 2023]
- June 30 Zodiac: Sign, Traits, Compatibility and More - AZ Animals - May 13th, 2023 [May 13th, 2023]
- Indiana's Funding Ban for Kinsey Sex-Research Institute Threatens ... - The Chronicle of Higher Education - May 13th, 2023 [May 13th, 2023]
- Have AI Chatbots Developed Theory of Mind? What We Do and Do ... - The New York Times - March 31st, 2023 [March 31st, 2023]
- Scoop: Coming Up on a New Episode of HOUSEBROKEN on FOX ... - Broadway World - March 31st, 2023 [March 31st, 2023]
- Here's five fall 2023 classes to fire up your bookbag - Duke Chronicle - March 31st, 2023 [March 31st, 2023]