Mouse lemur could serve as ideal model for primate biology and human disease – Phys.Org

June 7, 2017

The mouse lemurthe world's smallest primatehas the potential to transform the field of genetics and serve as an ideal model for a wide range of primate biology, behavior and medicine, including cardiovascular disease and Alzheimer's disease, Stanford University School of Medicine researchers say.

For decades, scientists have relied on mice, fruit flies and worms as genetic models, but despite all their success, these organisms routinely fail to mimic many aspects of primate biology, including many human diseases, said Mark Krasnow, MD, PhD, professor of biochemistry.

Frustrated by the lack of a good study model, Krasnow and his colleagues turned to the mouse lemur and began conducting detailed physiologic and genetic studies on hundreds of these petite, docile creatures in the rainforests of Madagascar.

Working in a Stanford-funded lab on the island country, the scientists report that they already have identified more than 20 individual lemurs with unique genetic traits, including obesity, high cholesterol, high blood sugar, cardiac arrhythmias, progressive eye disease and motor and personality disorders. Their hope is that continued study of these abundant primates could lead to a better understanding, and possibly better treatments, of these and other conditions in lemurs and humans.

'Huge potential'

"I think mouse lemurs have great potential for our understanding of primate biology, behavior and conservation, in the same way that fruit flies and mice over the last 30 or 40 years have transformed our understanding of developmental biology and many other areas of biology and medicine," Krasnow said. "Some of the most fascinating and important questions that need to be answered are primate-specific. For those, we really need something besides humans to complement the work that has been done in fruit flies and mice."

A paper describing the researchers' findings will be published online June 9 in Genetics. Krasnow is the senior author. Lead authorship is shared by graduate student Camille Ezran and postdoctoral scholar Caitlin Karanewsky.

The project began in 2009 when Krasnow, frustrated by the lack of a good animal model for lung diseasehis area of expertisecommissioned three high school interns to search the animal world for something better. By the end of the summer, the interns had come up with the mouse lemur, which fits all the necessary criteria: Like mice, these animals are small (about twice the size of a mouse), develop quickly, reproduce rapidly, produce many offspring, and are inexpensive and easy to maintain and manage. In genetic terms, the mouse lemur is about midway between humans and mice, Krasnow said.

"When I talk to scientists, their faces light up when I tell them about mouse lemurs because they are about the size of a mouse but they are primates, so that makes a huge difference," said Ezran, who was one of the high school interns. "I think they really do present such great potential for biological, behavioral and medical research in general."

Early on in the project, Krasnow sought out the perspective of Stanford veterinarians, ultimately recruiting Megan Albertelli, DVM, PhD, assistant professor of comparative medicine. A geneticist and primate specialist, Albertelli said she was initially skeptical of the idea of lemurs as animal models, but soon became enthusiastic after realizing their enormous potential for contributions in understanding neurologic problems, eye disease and other conditions where mouse models have fallen short.

Trip to France

She accompanied the group on a trip to France to visit with scientists who had been studying lemurs in the laboratory for years. A French team had found that some aging lemurs develop a form of dementia and accumulate plaques in the brain that resemble those of Alzheimer's patients.

"I saw that they were promising models for Alzheimer's disease," Albertelli said. "Alzheimer's is a condition that is hard to model in other animal species, so that was very exciting."

Mouse lemurs live exclusively on Madagascar, where they are found in great abundance. Tens of millions of them populate the island. While lemurs generally are endangered due to habitat destruction, mouse lemurs are not under threat and freely roam the island, said Ezran, who calls them the "rodents of Madagascar."

The Stanford researchers began to develop collaborations with other scientists studying lemurs, including those at the Centre ValBio near the Ranomafana National Park in Madagascar, who have been examining lemur ecology, family structure and behavior for decades.

During periodic visits to the island, Krasnow and his colleagues learned how to catch brown mouse lemurs in the rainforest just outside the research station, using a tiny banana slice inside a trap as a lure. The scientists then tagged and photographed each animal, gave them a thorough physical examination, analyzed them for behavioral issues and abnormalities and removed a drop of blood for detailed genetic and serum studies. The animals then were released back into the wild so the researchers could follow them over time to see how their environments may influence their progress and health. In 2013, Stanford built a sophisticated molecular biology and genetics lab within the ValBio complex, where these studies could be carried out.

'Distinctive personalities'

Lemurs have distinctive personalities, Krasnow said, and the researchers gave each one a name, based on his or her looks or behavior. For instance, one was named Feisty for his unusually aggressive nature; most lemurs are docile.

The work has led to a whole new way of doing genetic studies, said Krasnow, who is also a Howard Hughes Medical Institute investigator. Instead of using the traditional method of introducing genetic mutations into mice to create "knockout" miceor animals with customized genesthey found they were able to find naturally occurring variants among animals in the wild. Moreover, in working with lemurs in their native habitats, the researchers could better understand how the animals interact with their surroundings and the relationship between genes and the environment.

"Instead of introducing mutations in mice or fruit flies, we are doing something much more similar to what is done in humans," he said. "We are looking at all the wonderful genetic variation already existing in nature, since there are so many millions of mouse lemurs out there. We calculate that most 'knockout' mutations are already present in nature, and all we have to do is find them. And because the cost of sequencing a genome is rapidly dropping, it's now possible to sequence the genomes of thousands of mouse lemurs to see what mutations they are carrying."

In doing so, the researchers could accomplish in a few years for a tiny fraction of the cost what the International Knockout Mouse Consortium will accomplish in 10 years, at a cost of nearly $1 billion, he said.

But the project could use some additional staff, as the process of capturing the animals and screening them in the laboratory is labor-intensive, he said. He and his colleagues have come up with a multipurpose solution that will contribute to the local educational system while helping preserve the lemur populations in Madagascar, whose habitats are threatened by farming, mining and logging interests, he said.

Help from students

The group is developing a science curriculum for use in Malagasy high schools in which students learn about biology by exploring the rich environment right outside their school houses. Among the instructors is Manu Prakash, PhD, assistant professor of bioengineering at Stanford and a pioneer in the field of "frugal science," who has brought his powerful $1 paper microscopes to Madagascar and taught students how to explore the microscopic world in which they live, including the lice in their hair, the pathogens in their water and the disease-causing parasites in their environment. The curriculum was first introduced among university students, some of whom now are screening lemurs at the Stanford lab in Madagascar.

"We saw this as an opportunity because we are going over there to study the unique animals and biology and ecology of Madagascar, which is unsurpassed in the world," Krasnow said. "It is the No. 1 hotspot for biodiversity, but most of the students don't realize what they have in their backyards because they are being taught from textbooks and from teachers who have learned from Europeans."

He said the researchers hope to expand scientific curricula at all levels of education, helping train the Malagasy scientists of the future and build scientific capacity in the country, all the while creating an appreciation among the local population of the need to understand and preserve lemurs and other species for the future.

"We are trying to do this in a way that is respectful and will help the lemurs and the people of Madagascar, while enlightening many aspects of primate biology and human disease," he said.

The researchers plan to make the genetic sequencing and phenotyping information they obtain from the lemurs publicly available so that researchers around the world can take advantage of this trove of knowledge, Albertelli said.

Explore further: Three new primate species discovered in Madagascar

Scientists from the German Primate Center (DPZ), the University of Kentucky, the American Duke Lemur Center and the Universit d'Antananarivo in Madagascar have described three new species of mouse lemurs. They live in the ...

The ring-tailed lemur, an iconic primate that is emblematic of the wild and wonderful creatures inhabiting the tropical island of Madagascar, is in big trouble.

Scientists have identified two new species of mouse lemur, the saucer-eyed, teacup-sized primates native to the African island of Madagascar.

A Malagasy-German research team has discovered a new primate species in the Sahafina Forest in eastern Madagascar, a forest that has not been studied before.

Facial recognition is a biometricsystem that identifies or verifies a person from a digital image. It's used to find criminals, identify passport and driver's license fraud, and catch shoplifters. But can it be used to ...

Today, Madagascar is home to a mosaic of different habitatsa lush rainforest in the east and a dry deciduous forest in the west, separated by largely open highlands. But the island off the southeast coast of Africa hasn't ...

In 1859, Charles Darwin included a novel tree of life in his trailblazing book on the theory of evolution, On the Origin of Species. Now, scientists from Rutgers University-New Brunswick and their international collaborators ...

You've been there: Trying to carry on a conversation in a room so noisy that the background chatter threatens to drown out the words you hear. Yet somehow your auditory system is able to home in on the message being conveyed ...

Worms, it appears, are good at keeping secrets.

When a soil dries out, this has a negative impact on the activity of soil bacteria. Using an innovative combination of state-of-the-art analysis and imaging techniques, researchers at UFZ have now discovered that fungi increase ...

It's usually pretty easy for dedicated scientists with years of experience to tell two species of their favorite organism apart, be it squirrels or birds. The scientists have seen a lot of the animal they specialize in, and ...

Noise from motorboats is making fish become bad parents, and reducing the chance of their young surviving, research led by marine experts at the University of Exeter has shown.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read the original post:
Mouse lemur could serve as ideal model for primate biology and human disease - Phys.Org

Related Posts