People seeking help for pandemic influenza in Brazil in July 2009, when cold weather boosted the spread of the disease.
By Jon CohenMar. 13, 2020 , 7:41 PM
On a December afternoon, 13 days before the winter solstice, six men and women checked into the Surrey Clinical Research Facility, part of the University of Surrey in the United Kingdom. After having their noses swabbed to check for 16 different respiratory viruses, they walked into their own temperature-regulated rooms and, for 24 hours, each person stayed in a semirecumbent position in dim light. Nurses placed a cannula into a vein of each persons arm, allowing easy sampling of blood that flowed through a tube to portals in the wall. The six subjects could press buzzers for bathroom breaks, where the stool and urine were collected, but otherwise, they were alone in the near-dark.
None of these people were sick. And although the shortest day of the year was approaching, their ritual had nothing to do with pagan rites, Yuletide traditions, or the annual hippie gathering at nearby Stonehenge to celebrate the rebirth of the Sun. Instead, they were paid volunteers in a study led by infectious disease ecologist Micaela Martinez of Columbia University to investigate a phenomenon recognized 2500 years ago by Hippocrates and Thucydides: Many infectious diseases are more common during specific seasons. Its a very old question, but its not very well studied, Martinez says.
Its also a question that has suddenly become more pressing because of the emergence of COVID-19. With SARS-CoV-2, the virus that causes the disease, now infecting more than 135,000 around the globe, some hope it might mimic influenza and abate as summer arrives in temperate regions of the Northern Hemisphere, where about half of the worlds population lives. U.S. President Donald Trump has expressed that hope repeatedly. Theres a theory that, in April, when it gets warmhistorically, that has been able to kill the virus, Trump said on 14 February. But whats known about other diseases doesnt offer much support for the idea that COVID-19 will suddenly disappear over the next few weeks.
Different diseases have different patterns. Some peak in early or late winter, others in spring, summer, or fall. Some diseases have different seasonal peaks depending on latitude. And many have no seasonal cycle at all. So no one knows whether SARS-CoV-2 will change its behavior come spring. I would caution over-interpreting that hypothesis, Nancy Messonnier, the point person for COVID-19 at the U.S. Centers for Disease Control and Prevention, said at a press conference on 12 February. If the seasons do affect SARS-CoV-2, it also could defy that pattern in this first year and keep spreading, because humanity has not had a chance to build immunity to it.
Even for well-known seasonal diseases, its not clear why they wax and wane during the calendar year. Its an absolute swine of a field, says Andrew Loudon, a chronobiologist at the University of Manchester. Investigating a hypothesis over several seasons can take 2 or 3 years. Postdocs can only get one experiment done and it can be a career killer, Loudon says. The field is also plagued by confounding variables. All kinds of things are seasonal, like Christmas shopping, says epidemiologist Scott Dowell, who heads vaccine development and surveillance at the Bill and Melinda Gates Foundation and in 2001 wrote a widely cited perspective that inspired Martinezs current study. And its easy to be misled by spurious correlations, Dowell says.
Despite the obstacles, researchers are testing a multitude of theories. Many focus on the relationships between the pathogen, the environment, and human behavior. Influenza, for example, might do better in winter because of factors such as humidity, temperature, people being closer together, or changes in diets and vitamin D levels. Martinez is studying another theory, which Dowells paper posited but didnt test: The human immune system may change with the seasons, becoming more resistant or more susceptible to different infections based on how much light our bodies experience.
Beyond the urgent question of what to expect with COVID-19, knowing what limits or promotes infectious diseases during particular times of year could point to new ways to prevent or treat them. Understanding seasonality could also inform disease surveillance, predictions, and the timing of vaccination campaigns. If we knew what suppressed influenza to summertime levels, that would be a lot more effective than any of the flu vaccines we have, Dowell says.
At least 68 infectious diseases are seasonal, according to a 2018 paper by Micaela Martinez of Columbia University. But theyre not in sync, and seasonality varies by location. In this graphic, based on U.S. federal and state health records, each bubble represents the percentage of annual cases that occurred in each month. (The data are old because many diseases declinedin some cases to zeroafter introduction of vaccines.)
(GRAPHIC) N. Desai/Science; (DATA) Project Tycho
Martinez becameinterested in seasonality when, as an undergraduate at the University of Alaska Southeast, she had a job tagging Arctic ringed seals, doing skin biopsies and tracking their daily and seasonal movements. While working on her Ph.D., her focus on seasonality shifted to polio, a much-feared summer disease before the advent of vaccines. (Outbreaks often led to the closing of swimming pools, which had virtually nothing to do with viral spread.) Polio seasonality in turn made her curious about other diseases. In 2018, she published The calendar of epidemics inPLOS Pathogens, which included a catalog of 68 diseases and their peculiar cycles.
Except in the equatorial regions, respiratory syncytial virus (RSV) is a winter disease, Martinez wrote, but chickenpox favors the spring. Rotavirus peaks in December or January in the U.S. Southwest, but in April and May in the Northeast. Genital herpes surges all over the country in the spring and summer, whereas tetanus favors midsummer; gonorrhea takes off in the summer and fall, and pertussis has a higher incidence from June through October. Syphilis does well in winter in China, but typhoid fever spikes there in July. Hepatitis C peaks in winter in India but in spring or summer in Egypt, China, and Mexico. Dry seasons are linked to Guinea worm disease and Lassa fever in Nigeria and hepatitis A in Brazil.
Seasonality is easiest to understand for diseases spread by insects that thrive during rainy seasons, such as African sleeping sickness, chikungunya, dengue, and river blindness. For most other infections, theres little rhyme or reason to the timing. Whats really amazing to me is that you can find a virus that peaks in almost every month of the year in the same environment in the same location, says Neal Nathanson, an emeritus virologist at the University of Pennsylvania Perelman School of Medicine. Thats really crazy if you think about it. To Nathanson, this variation suggests human activitysuch as children returning to school or people huddling indoors in cold weatherdoesnt drive seasonality. Most viruses get transmitted between kids, and under those circumstances, youd expect most of the viruses to be in sync, he says.
Nathanson suspects that, at least for viruses, their viability outside the human body is more important. The genetic material of some viruses is packaged not only in a capsid protein, but also in a membrane called an envelope, which is typically made of lipids. It interacts with host cells during the infection process and helps dodge immune attacks. Viruses with envelopes are more fragile and vulnerable to adverse conditions, Nathanson says, including, for example, summertime heat and dryness.
A 2018 study inScientific Reportssupports the idea. Virologist Sandeep Ramalingam at the University of Edinburgh and his colleagues analyzed the presence and seasonality of nine virusessome enveloped, some notin more than 36,000 respiratory samples taken over 6.5 years from people who sought medical care in their region. Enveloped viruses have a very, very definite seasonality, Ramalingam says.
In a study in New York and New Jersey, Micaela Martinez hopes to find out how artificial lighting affects the immune system.
RSV and human metapneumovirus both have an envelope, like the flu, and peak during the winter months. None of the three are present for more than one-third of the year. Rhinoviruses, the best-known cause of the common cold, lack an envelope andironicallyhave no particular affinity for cold weather:The study found them in respiratory samples on 84.7% of the days of the year and showed that they peak when children return to school from summer and spring holidays. Adenoviruses, another set of cold viruses, also lack an envelope and had a similar pattern, circulating over half the year.
Ramalingams team also studied the relationship between viral abundance and daily weather changes. Influenza and RSV both did best when the change in relative humidity over a 24-hour period was lower than the average (a 25% difference). Theres something about the lipid envelope thats more fragile when the humidity changes sharply, Ramalingam concludes.
Jeffrey Shaman, a climate geophysicist at Columbia, contends that what matters most is absolute humiditythe total amount of water vapor in a given volume of airand not relative humidity, which measures how close the air is to saturation. In a 2010 paper inPLOS Biology, Shaman and epidemiologist Marc Lipsitch of the Harvard T.H. Chan School of Public Health reported that drops in absolute humidity better explained the onset of influenza epidemics in the continental United States than relative humidity or temperature. And absolute humidity drops sharply in winter, because cold air holds less water vapor.
Why lower absolute humidity might favor some viruses remains unclear, however. Variables that could affect the viability of the viral membrane could include changes in osmotic pressure, evaporation rates, and pH, Shaman says. Once you get down to the brass tacks of it, we dont have an answer.
Will SARS-CoV-2, which has an envelope, prove fragile in spring and summer, when absolute and relative humidity climb? The most notorious of the other coronavirus diseases, SARS and Middle East respiratory syndrome (MERS), offer no clues. SARS emerged in late 2002 and was driven out of the human population in the summer of 2003 through intensive containment efforts. MERS sporadically jumps from camels to humans and has caused outbreaks in hospitals, but never widespread human-to-human transmission like COVID-19. Neither virus circulated for long enough, on a wide enough scale, for any seasonal cycle to emerge.
If we knew what suppressed influenza to summertime levels, that would be a lot more effective than any of the flu vaccines we have.
Four human coronaviruses that cause colds and other respiratory diseases are more revealing. Three have marked winter seasonality, with few or no detections in the summer, molecular biologist Kate Templeton, also at the University of Edinburgh, concluded in a 2010 analysis of 11,661 respiratory samples collected between 2006 and 2009. These three viruses essentially behave like the flu.
That does not mean COVID-19 will as well. The virus can clearly transmit in warm, humid climates: Singapore has more than 175 cases. Two new papers published on preprint servers this week come to opposite conclusions. One, co-authored by Lipsitch, looked at COVID-19 spread in 19 provinces across China, which ranged from cold and dry to tropical, and found sustained transmission everywhere. The second study concludes that sustainedtransmission appears to occur only in specific bands of the globe that have temperatures between 5C and 11C and 47% to 70% relative humidity.
In the final analysis, theres a balancing act between environmental factors and a populations immune system. The other coronaviruses have long been around, so a certain part of the population has immunity, which may help exile those viruses under unfavorable conditions. But thats not true for COVID-19. Even though there might be a big seasonal decline, if enough susceptible people are around, it can counter that and continue for a long time, Martinez says. Lipsitch doesnt think the virus will go poof in April either. Any slowdown is expected to be modest, and not enough to stop transmission on its own, he wrote in a recent blog post.
In Surrey, Martinez is investigating a different factor that might eventually affect COVID-19 incidence. Her subjects have returned to the clinic repeatedlyat the winter and summer solstices and again at the spring and autumn equinoxesso the researchers can evaluate how their immune system and other physiology change over the course of the day and from season to season.
She doesnt expect to show that our immunity is, say, weaker in the winter and stronger in the summer. But by counting different immune system cells, assessing metabolites and cytokines in the blood, deciphering the fecal microbiome, and measuring hormones, Martinezs team hopes to find that the seasons may restructure the immune system, making some types of cells more abundant in certain locales, and others less, in ways that influence our susceptibility to pathogens.
Animal studies support the idea that immunity changes with the seasons. Ornithologist Barbara Hall from the University of Groningen and her colleagues, for example, studied European stonechats, small songbirds that they caught and then bred in captivity. By taking multiple blood samples over the course of 1 year, they found that the birds ramp up their immune systems in the summer, but then tamp them down in the autumn, the time they migrate, presumably because migration is a big drain on their energy.
Melatonin, a hormone primarily secreted at night by the pineal gland, is a major driver of such changes. Melatonin keeps track of the time of day but is also a biological calendar for the seasons, says Randy Nelson, an endocrinologist at the University of West Virginia who specializes in circadian rhythms. When nights are long, more melatonin is released. The cells say, Oh, Im seeing quite a bit of melatonin, I know, its a winter night. In studies of Siberian hamsterswhich, unlike mice, are diurnalNelson and his co-workers have shown that administering melatonin or altering light patterns can change immune responses by up to 40%.
Seasonal changes in humidity, temperature, and other factors may affect the viability of viruses in droplets produced when people sneeze or cough.
The human immune system, too, seems to have an innate circadian rhythm. For instance, a vaccine trial in 276 adults by researchers at the University of Birmingham randomly assigned half to receive an influenza vaccine in the morning and the other half in the afternoon. Participants in the morning group had significantly higher antibody responses to two of the three flu strains in the vaccine, the researchers reported in 2016.
Theres evidence of seasonal variation in the actions of human immune genes as well. In a massive analysis of blood and tissue samples from more than 10,000 people in Europe, the United States, Gambia, and Australia, researchers at the University of Cambridge found some 4000 genes related to immune function that had seasonal expression profiles. In one German cohort, expression in white blood cells of nearly one in four genes in the entire genome differed by the seasons. Genes in the Northern Hemisphere tended to switch on when they were switched off south of the equator, and vice versa.
Just how these massive changes affect the bodys ability to fight pathogens is unclear, however, as immunologist Xaquin Castro Dopico and colleagues explain in a 2015 paper describing the findings. And some changes could be the result of an infection, instead of the cause. The team tried to eliminate people who had acute infections, but of course a seasonal infectious burden likely plays a part, says Dopico, who now is at the Karolinska Institute. And seasonal immunity changes could not explain all the complex variation in seasonality that diseases show. Theyre all out of sync with each other, Nathanson points out. Hes also skeptical that seasonal immune system changes could be large enough to make a difference. It would have to be pretty markedly different.
Martinez, however, says she has found intriguing hints. Early analyses from her Surrey study, which ended collecting data in December 2019, dont reveal anything about seasonality yet, but they do show that specific subsets of white blood cells that play central roles in immune system memory and response are elevated at certain times of day. She hopes to firm up the finding by launching a similar but larger study next year.
Martinez cautions, however, that artificial light may play havoc with the circadian rhythms that have evolved, with unpredictable effects on disease susceptibility. To explore possible impacts, Martinez has a separate study underway, with Helm, in both urban and rural parts of New York and New Jersey. They have installed light sensors on trees and poles and outfitted participants with devices that monitor light exposure and body temperature. The fact that people really are just kind of washing out the rhythms in light exposure can be problematic, she says.
Experiments of naturecould also offer insights into the factors affecting disease seasonality, Dowell suggested in his 2001 paper. People from the Southern and Northern Hemispheres who have adapted to different seasons regularly mix on cruise ships or at conventions, where they are confronted by the same pathogens. Witness the massive COVID-19 outbreak on thePrincess Diamond, which was docked and quarantined in Yokohama, Japan, for 2 weeks last month: Researchers could potentially analyze whether they were infected at different rates.
Whatever the answers, they might eventually bring important public health benefits, Martinez says. For example, If we know how best to administer vaccines, in terms of what time of year and the best time of day to take advantage of our immune systems, then we can get a lot more bang for our buck, she says.
The global COVID-19 emergency may bring more attention to the research and help speed discoveries, she says. But for now, no one knows whether rising humidity, the lengthening days, or some as-yet-unsuspected seasonal effect will come to the rescueor whether humanity must confront the pandemic without any help from the seasons.
Time will tell.
Link:
Why do dozens of diseases wax and wane with the seasonsand will COVID-19? - Science Magazine
- The Impact of AI on Human Behavior: Insights and Implications - iTMunch - January 23rd, 2025 [January 23rd, 2025]
- Disturbing Wildlife Isnt Fun: IFS Parveen Kaswan Raises Concern Over Human Behavior in Viral Clip - Indian Masterminds - January 15th, 2025 [January 15th, 2025]
- The interplay of time and space in human behavior: a sociological perspective on the TSCH model - Nature.com - January 1st, 2025 [January 1st, 2025]
- Thinking Slowly: The Paradoxical Slowness of Human Behavior - Caltech - December 23rd, 2024 [December 23rd, 2024]
- From smog to crime: How air pollution is shaping human behavior and public safety - The Times of India - December 9th, 2024 [December 9th, 2024]
- The Smell Of Death Has A Strange Influence On Human Behavior - IFLScience - October 26th, 2024 [October 26th, 2024]
- "WEIRD" in psychology literature oversimplifies the global diversity of human behavior. - Psychology Today - October 2nd, 2024 [October 2nd, 2024]
- Scientists issue warning about increasingly alarming whale behavior due to human activity - Orcasonian - September 23rd, 2024 [September 23rd, 2024]
- Does AI adoption call for a change in human behavior? - Fast Company - July 26th, 2024 [July 26th, 2024]
- Dogs can smell human stress and it alters their own behavior, study reveals - New York Post - July 26th, 2024 [July 26th, 2024]
- Trajectories of brain and behaviour development in the womb, at birth and through infancy - Nature.com - June 18th, 2024 [June 18th, 2024]
- AI model predicts human behavior from our poor decision-making - Big Think - June 18th, 2024 [June 18th, 2024]
- ZkSync defends Sybil measures as Binance offers own ZK token airdrop - TradingView - June 18th, 2024 [June 18th, 2024]
- On TikTok, Goldendoodles Are People Trapped in Dog Bodies - The New York Times - June 18th, 2024 [June 18th, 2024]
- 10 things only introverts find irritating, according to psychology - Hack Spirit - June 18th, 2024 [June 18th, 2024]
- 32 animals that act weirdly human sometimes - Livescience.com - May 24th, 2024 [May 24th, 2024]
- NBC Is Using Animals To Push The LGBT Agenda. Here Are 5 Abhorrent Animal Behaviors Humans Shouldn't Emulate - The Daily Wire - May 24th, 2024 [May 24th, 2024]
- New study examines the dynamics of adaptive autonomy in human volition and behavior - PsyPost - May 24th, 2024 [May 24th, 2024]
- 30000 years of history reveals that hard times boost human societies' resilience - Livescience.com - May 12th, 2024 [May 12th, 2024]
- Kingdom of the Planet of the Apes Actors Had Trouble Reverting Back to Human - CBR - May 12th, 2024 [May 12th, 2024]
- The need to feel safe is a core driver of human behavior. - Psychology Today - April 15th, 2024 [April 15th, 2024]
- AI learned how to sway humans by watching a cooperative cooking game - Science News Magazine - March 29th, 2024 [March 29th, 2024]
- We can't combat climate change without changing minds. This psychology class explores how. - Northeastern University - March 11th, 2024 [March 11th, 2024]
- Bees Reveal a Human-Like Collective Intelligence We Never Knew Existed - ScienceAlert - March 11th, 2024 [March 11th, 2024]
- Franciscan AI expert warns of technology becoming a 'pseudo-religion' - Detroit Catholic - March 11th, 2024 [March 11th, 2024]
- Freshwater resources at risk thanks to human behavior - messenger-inquirer - March 11th, 2024 [March 11th, 2024]
- Astrocytes Play Critical Role in Regulating Behavior - Neuroscience News - March 11th, 2024 [March 11th, 2024]
- Freshwater resources at risk thanks to human behavior - Sunnyside Sun - March 11th, 2024 [March 11th, 2024]
- Freshwater resources at risk thanks to human behavior - Blue Mountain Eagle - March 11th, 2024 [March 11th, 2024]
- 7 Books on Human Behavior - Times Now - March 11th, 2024 [March 11th, 2024]
- Euphemisms increasingly used to soften behavior that would be questionable in direct language - Norfolk Daily News - February 29th, 2024 [February 29th, 2024]
- Linking environmental influences, genetic research to address concerns of genetic determinism of human behavior - Phys.org - February 29th, 2024 [February 29th, 2024]
- Emerson's Insight: Navigating the Three Fundamental Desires of Human Nature - The Good Men Project - February 29th, 2024 [February 29th, 2024]
- Dogs can recognize a bad person and there's science to prove it. - GOOD - February 29th, 2024 [February 29th, 2024]
- What Is Organizational Behavior? Everything You Need To Know - MarketWatch - February 4th, 2024 [February 4th, 2024]
- Overcoming 'Otherness' in Scientific Research Commentary in Nature Human Behavior USA - English - USA - PR Newswire - February 4th, 2024 [February 4th, 2024]
- "Reichman University's behavioral economics program: Navigating human be - The Jerusalem Post - January 19th, 2024 [January 19th, 2024]
- Of trees, symbols of humankind, on Tu BShevat - The Jewish Star - January 19th, 2024 [January 19th, 2024]
- Tapping Into The Power Of Positive Psychology With Acclaimed Expert Niyc Pidgeon - GirlTalkHQ - January 19th, 2024 [January 19th, 2024]
- Don't just make resolutions, 'be the architect of your future self,' says Stanford-trained human behavior expert - CNBC - December 31st, 2023 [December 31st, 2023]
- Never happy? Humans tend to imagine how life could be better : Short Wave - NPR - December 31st, 2023 [December 31st, 2023]
- People who feel unhappy but hide it well usually exhibit these 9 behaviors - Hack Spirit - December 31st, 2023 [December 31st, 2023]
- If you display these 9 behaviors, you're being passive aggressive without realizing it - Hack Spirit - December 31st, 2023 [December 31st, 2023]
- Men who are relationship-oriented by nature usually display these 9 behaviors - Hack Spirit - December 31st, 2023 [December 31st, 2023]
- A look at the curious 'winter break' behavior of ChatGPT-4 - ReadWrite - December 14th, 2023 [December 14th, 2023]
- Neuroscience and Behavior Major (B.S.) | College of Liberal Arts - UNH's College of Liberal Arts - December 14th, 2023 [December 14th, 2023]
- The positive health effects of prosocial behaviors | News | Harvard ... - HSPH News - October 27th, 2023 [October 27th, 2023]
- The valuable link between succession planning and skills - Human Resource Executive - October 27th, 2023 [October 27th, 2023]
- Okinawa's ants show reduced seasonal behavior in areas with more human development - Phys.org - October 27th, 2023 [October 27th, 2023]
- How humans use their sense of smell to find their way | Penn Today - Penn Today - October 27th, 2023 [October 27th, 2023]
- Wrestling With Evil in the World, or Is It Something Else? - Psychiatric Times - October 27th, 2023 [October 27th, 2023]
- Shimmying like electric fish is a universal movement across species - Earth.com - October 27th, 2023 [October 27th, 2023]
- Why do dogs get the zoomies? - Care.com - October 27th, 2023 [October 27th, 2023]
- How Stuart Robinson's misconduct went overlooked for years - Washington Square News - October 27th, 2023 [October 27th, 2023]
- Whatchamacolumn: Homeless camps back in the news - News-Register - October 27th, 2023 [October 27th, 2023]
- Stunted Growth in Infants Reshapes Brain Function and Cognitive ... - Neuroscience News - October 27th, 2023 [October 27th, 2023]
- Social medias role in modeling human behavior, societies - kuwaittimes - October 27th, 2023 [October 27th, 2023]
- The gift of reformation - Living Lutheran - October 27th, 2023 [October 27th, 2023]
- After pandemic, birds are surprisingly becoming less fearful of humans - Study Finds - October 27th, 2023 [October 27th, 2023]
- Nick Treglia: The trouble with fairness and the search for truth - 1819 News - October 27th, 2023 [October 27th, 2023]
- Science has an answer for why people still wave on Zoom - Press Herald - October 27th, 2023 [October 27th, 2023]
- Orcas are learning terrifying new behaviors. Are they getting smarter? - Livescience.com - October 27th, 2023 [October 27th, 2023]
- Augmenting the Regulatory Worker: Are We Making Them Better or ... - BioSpace - October 27th, 2023 [October 27th, 2023]
- What "The Creator", a film about the future, tells us about the present - InCyber - October 27th, 2023 [October 27th, 2023]
- WashU Expert: Some parasites turn hosts into 'zombies' - The ... - Washington University in St. Louis - October 27th, 2023 [October 27th, 2023]
- Is secondhand smoke from vapes less toxic than from traditional ... - Missouri S&T News and Research - October 27th, 2023 [October 27th, 2023]
- How apocalyptic cults use psychological tricks to brainwash their ... - Big Think - October 27th, 2023 [October 27th, 2023]
- Human action pushing the world closer to environmental tipping ... - Morung Express - October 27th, 2023 [October 27th, 2023]
- What We Get When We Give | Harvard Medicine Magazine - Harvard University - October 27th, 2023 [October 27th, 2023]
- Psychological Anime: 12 Series You Should Watch - But Why Tho? - October 27th, 2023 [October 27th, 2023]
- Roosters May Recognize Their Reflections in Mirrors, Study Suggests - Smithsonian Magazine - October 27th, 2023 [October 27th, 2023]
- June 30 Zodiac: Sign, Traits, Compatibility and More - AZ Animals - May 13th, 2023 [May 13th, 2023]
- Indiana's Funding Ban for Kinsey Sex-Research Institute Threatens ... - The Chronicle of Higher Education - May 13th, 2023 [May 13th, 2023]
- Have AI Chatbots Developed Theory of Mind? What We Do and Do ... - The New York Times - March 31st, 2023 [March 31st, 2023]
- Scoop: Coming Up on a New Episode of HOUSEBROKEN on FOX ... - Broadway World - March 31st, 2023 [March 31st, 2023]
- Here's five fall 2023 classes to fire up your bookbag - Duke Chronicle - March 31st, 2023 [March 31st, 2023]
- McDonald: Aspen's like living in a 'Pullman town' - The Aspen Times - March 31st, 2023 [March 31st, 2023]
- Children Who Are Exposed to Awe-Inspiring Art Are More Likely to Become Generous, Empathic Adults, a New Study Says - artnet News - March 31st, 2023 [March 31st, 2023]
- DataDome Raises Another $42M to Prevent Bot Attacks in Real ... - AlleyWatch - March 31st, 2023 [March 31st, 2023]
- Observing group-living animals with drones may help us understand ... - Innovation Origins - March 31st, 2023 [March 31st, 2023]