Variation along P2RX7 interacts with early traumas on severity of … – Nature.com

Bandelow, B. & Michaelis, S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin. Neurosci. 17, 327335 (2015).

Article PubMed PubMed Central Google Scholar

Pereira, V. S. et al. Antidepressant- and anticompulsive-like effects of purinergic receptor blockade: Involvement of nitric oxide. Eur. Neuropsychopharmacol. 23, 17691778. https://doi.org/10.1016/j.euroneuro.2013.01.008 (2013).

Article CAS PubMed Google Scholar

Murrough, J. W., Yaqubi, S., Sayed, S. & Charney, D. S. Emerging drugs for the treatment of anxiety. Expert Opin. Emerg. Drugs 20, 393406. https://doi.org/10.1517/14728214.2015.1049996 (2015).

Article CAS PubMed PubMed Central Google Scholar

Mechawar, N. & Savitz, J. Neuropathology of mood disorders: do we see the stigmata of inflammation?. Transl. Psychiatry 6, e946. https://doi.org/10.1038/tp.2016.212 (2016).

Article CAS PubMed PubMed Central Google Scholar

ngr, D., Bechtholt, A. J., Carlezon, W. A. & Cohen, B. M. Glial abnormalities in mood disorders. Harv. Rev. Psychiatry 22, 334337. https://doi.org/10.1097/HRP.0000000000000060 (2014).

Article PubMed PubMed Central Google Scholar

Bhattacharya, A. & Jones, D. N. C. Emerging role of the P2X7NLRP3IL1 pathway in mood disorders. Psychoneuroendocrinology 98, 95100. https://doi.org/10.1016/j.psyneuen.2018.08.015 (2018).

Article CAS PubMed Google Scholar

Rahimian, R., Wakid, M., OLeary, L. A. & Mechawar, N. The emerging tale of microglia in psychiatric disorders. Neurosci. Biobehav. Rev. 131, 129. https://doi.org/10.1016/j.neubiorev.2021.09.023 (2021).

Article PubMed Google Scholar

Fekri, K., Nayebi, A. M., Sadigh-Eteghad, S., Farajdokht, F. & Mahmoudi, J. The neurochemical changes involved in immobilization stress-induced anxiety and depression: Roles for oxidative stress and neuroinflammation. Neurochem. J. 14, 133149. https://doi.org/10.1134/S181971242002004X (2020).

Article Google Scholar

Hanisch, U. K. Microglia as a source and target of cytokines. Glia 40, 140155. https://doi.org/10.1002/glia.10161 (2002).

Article PubMed Google Scholar

Bollinger, J. L. & Wohleb, E. S. The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences. Neurosci. Lett. 711, 134369. https://doi.org/10.1016/j.neulet.2019.134369 (2019).

Article CAS PubMed PubMed Central Google Scholar

Lehmann, M. L., Weigel, T. K., Poffenberger, C. N. & Herkenham, M. The behavioral sequelae of social defeat require microglia and are driven by oxidative stress in mice. J. Neurosci. 39, 55945605. https://doi.org/10.1523/JNEUROSCI.0184-19.2019 (2019).

Article CAS PubMed PubMed Central Google Scholar

Du Preez, A. et al. The type of stress matters: Repeated injection and permanent social isolation stress in male mice have a differential effect on anxiety- and depressive-like behaviours, and associated biological alterations. Transl. Psychiatry 10, 325. https://doi.org/10.1038/s41398-020-01000-3 (2020).

Article CAS PubMed PubMed Central Google Scholar

Tynan, R. J. et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav. Immun. 24, 10581068. https://doi.org/10.1016/j.bbi.2010.02.001 (2010).

Article CAS PubMed Google Scholar

Meyer, J. H. et al. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 7, 10641074. https://doi.org/10.1016/S2215-0366(20)30255-8 (2020).

Article PubMed PubMed Central Google Scholar

Sperlgh, B. & Illes, P. P2X7 receptor: An emerging target in central nervous system diseases. Trends Pharmacol. Sci. 35, 537547. https://doi.org/10.1016/j.tips.2014.08.002 (2014).

Article CAS PubMed Google Scholar

Cortese, B. M. & Phan, K. L. The role of glutamate in anxiety and related disorders. CNS Spectr. 10, 820830. https://doi.org/10.1017/s1092852900010427 (2005).

Article PubMed Google Scholar

Simon, A. B. & Gorman, J. M. Advances in the treatment of anxiety: Targeting glutamate. NeuroRx 3, 5768. https://doi.org/10.1016/j.nurx.2005.12.005 (2006).

Article CAS PubMed PubMed Central Google Scholar

Skolnick, P., Popik, P. & Trullas, R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol. Sci. 30, 563569. https://doi.org/10.1016/j.tips.2009.09.002 (2009).

Article CAS PubMed Google Scholar

Zarate, C. et al. Glutamatergic modulators: the future of treating mood disorders?. Harv. Rev. Psychiatry 18, 293303. https://doi.org/10.3109/10673229.2010.511059 (2010).

Article PubMed PubMed Central Google Scholar

Machado-Vieira, R., Ibrahim, L., Henter, I. D. & Zarate, C. A. Novel glutamatergic agents for major depressive disorder and bipolar disorder. Pharmacol. Biochem. Behav. 100, 678687. https://doi.org/10.1016/j.pbb.2011.09.010 (2012).

Article CAS PubMed Google Scholar

Sanacora, G., Treccani, G. & Popoli, M. Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62, 6377. https://doi.org/10.1016/j.neuropharm.2011.07.036 (2012).

Article CAS PubMed Google Scholar

Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959964. https://doi.org/10.1126/science.1190287 (2010).

Article ADS CAS PubMed PubMed Central Google Scholar

Hong, S. et al. The P2X7 receptor in activated microglia promotes depression- and anxiety-like behaviors in lithium -pilocarpine induced epileptic rats. Neurochem. Int. 138, 104773. https://doi.org/10.1016/j.neuint.2020.104773 (2020).

Article CAS PubMed Google Scholar

Mantere, O. et al. Neuroticism mediates the effect of P2 RX7 on outcomes of mood disorders. Depress. Anxiety 29, 816823 (2012).

Article CAS PubMed Google Scholar

Soronen, P. et al. P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 435447. https://doi.org/10.1002/ajmg.b.31179 (2011).

Article CAS PubMed Google Scholar

Hejjas, K. et al. Association between depression and the Gln460Arg polymorphism of P2RX7 gene: A dimensional approach. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150, 295299. https://doi.org/10.1002/ajmg.b.30799 (2009).

Article CAS Google Scholar

Nagy, G. et al. P2RX7 Gln460Arg polymorphism is associated with depression among diabetic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 18841888. https://doi.org/10.1016/j.pnpbp.2008.08.021 (2008).

Article CAS PubMed Google Scholar

Liu, J. et al. Genome-wide Mendelian randomization identifies actionable novel drug targets for psychiatric disorders. Neuropsychopharmacology 48, 270280 (2023).

Article PubMed Google Scholar

Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343352. https://doi.org/10.1038/s41593-018-0326-7 (2019).

Article CAS PubMed PubMed Central Google Scholar

Luo, X.-J. et al. Cross-ancestry genome-wide association study and systems-level integrative analyses implicate new risk genes and therapeutic targets for depression. medRxiv 2023.2002. 2024.23286411 (2023).

Kristof, Z. et al. P2RX7 gene variation mediates the effect of childhood adversity and recent stress on the severity of depressive symptoms. PLoS ONE 16, e0252766. https://doi.org/10.1371/journal.pone.0252766 (2021).

Article CAS PubMed PubMed Central Google Scholar

Kendall, P. C. & Watson, D. E. Anxiety and Depression: Distinctive and Overlapping Features (Academic Press, 1989).

Google Scholar

Eysenck, M. W. & Fajkowska, M. Anxiety and Depression: Toward Overlapping and Distinctive Features. Vol. 32. 13911400 (Taylor & Francis, 2018).

Fajkowska, M. Personality Coherence and Incoherence: A Perspective on Anxiety and Depression (Eliot Werner Publications, 2013).

Google Scholar

Fajkowska, M., Domaradzka, E. & Wytykowska, A. Types of anxiety and depression: Theoretical assumptions and development of the Anxiety and Depression Questionnaire. Front. Psychol. 8, 2376 (2018).

Article PubMed PubMed Central Google Scholar

Andrejew, R. et al. The P2X7 receptor: Central hub of brain diseases. Front. Mol. Neurosci. 13, 124. https://doi.org/10.3389/fnmol.2020.00124 (2020).

Article CAS PubMed PubMed Central Google Scholar

Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748752. https://doi.org/10.1038/nature08185 (2009).

Article ADS CAS PubMed Google Scholar

Shi, S. Q. et al. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl. Psychiatry 6, e748. https://doi.org/10.1038/tp.2016.9 (2016).

Article CAS PubMed PubMed Central Google Scholar

North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 10131067. https://doi.org/10.1152/physrev.00015.2002 (2002).

Article CAS PubMed Google Scholar

Erhardt, A. et al. Association of polymorphisms in P2RX7 and CaMKKb with anxiety disorders. J. Affect. Disord. 101, 159168. https://doi.org/10.1016/j.jad.2006.11.016 (2007).

Article CAS PubMed Google Scholar

Jiang, L.-H., Roger, S. & Baldwin, S. Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front. Pharmacol. 4, 55 (2013).

Article CAS PubMed PubMed Central Google Scholar

Wei, L. et al. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci. Biobehav. Rev. 87, 192205. https://doi.org/10.1016/j.neubiorev.2018.02.005 (2018).

Article CAS PubMed Google Scholar

Kim, J. et al. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nat. Commun. 11, 1898. https://doi.org/10.1038/s41467-020-15655-5 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Horti, A. G. et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc. Natl. Acad. Sci. U S A 116, 16861691. https://doi.org/10.1073/pnas.1812155116 (2019).

Article ADS CAS PubMed PubMed Central Google Scholar

Lord, B. et al. A novel radioligand for the ATP-gated ion channel P2X7: [3H] JNJ-54232334. Eur. J. Pharmacol. 765, 551559. https://doi.org/10.1016/j.ejphar.2015.09.026 (2015).

Article CAS PubMed Google Scholar

He, Y., Taylor, N., Fourgeaud, L. & Bhattacharya, A. The role of microglial P2X7: Modulation of cell death and cytokine release. J. Neuroinflamm. 14, 135. https://doi.org/10.1186/s12974-017-0904-8 (2017).

Article CAS Google Scholar

Adinolfi, E. et al. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol. 151, 234244. https://doi.org/10.1016/j.bcp.2017.12.021 (2018).

Article CAS PubMed Google Scholar

Bhattacharya, A. & Biber, K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 64, 17721787 (2016).

Article PubMed Google Scholar

Falzoni, S., Donvito, G. & Di Virgilio, F. Detecting adenosine triphosphate in the pericellular space. Interface Focus 3, 20120101 (2013).

Article PubMed PubMed Central Google Scholar

He, Y., Taylor, N., Fourgeaud, L. & Bhattacharya, A. The role of microglial P2X7: Modulation of cell death and cytokine release. J. Neuroinflamm. 14, 113 (2017).

Article Google Scholar

Bhattacharya, A. et al. Neuropsychopharmacology of JNJ-55308942: Evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology 43, 25862596 (2018).

Article CAS PubMed PubMed Central Google Scholar

Read more here:

Variation along P2RX7 interacts with early traumas on severity of ... - Nature.com

Related Posts