As obstinate and frustrating as we are sometimes, humans in general are pretty flexible when it comes to learningespecially compared to AI.
Our ability to adapt is deeply rooted within our brains chemical base code. Although modern AI and neurocomputation have largely focused on loosely recreating the brains electrical signals, chemicals are actually the prima donna of brain-wide neural transmission.
Chemical neurotransmitters not only allow most signals to jump from one neuron to the next, they also feedback and fine-tune a neurons electrical signals to ensure theyre functioning properly in the right contexts. This process, traditionally dubbed neuromodulation, has been front and center in neuroscience research for many decades. More recently, the idea has expanded to also include the process of directly changing electrical activity through electrode stimulation rather than chemicals.
Neural chemicals are the targets for most of our current medicinal drugs that re-jigger brain functions and states, such as anti-depressants or anxiolytics. Neuromodulation is also an immensely powerful way for the brain to flexibly adapt, which is why its perhaps surprising that the mechanism has rarely been explicitly incorporated into AI methods that mimic the brain.
This week, a team from the University of Liege in Belgium went old school. Using neuromodulation as inspiration, they designed a new deep learning model that explicitly adopts the mechanism to better learn adaptive behaviors. When challenged on a difficult navigational task, the team found that neuromodulation allowed the artificial neural net to better adjust to unexpected changes.
For the first time, cognitive mechanisms identified in neuroscience are finding algorithmic applications in a multi-tasking context. This research opens perspectives in the exploitation in AI of neuromodulation, a key mechanism in the functioning of the human brain, said study author Dr. Damien Ernst.
Neuromodulation often appears in the same breath as another jargon-y word, neuroplasticity. Simply put, they just mean that the brain has mechanisms to adapt; that is, neural networks are flexible or plastic.
Cellular neuromodulation is perhaps the grandfather of all learning theories in the brain. Famed Canadian psychologist and father of neural networks Dr. Donald Hebb popularized the theory in the 1900s, which is now often described as neurons that fire together, wire together. On a high level, Hebbian learning summarizes how individual neurons flexibly change their activity levels so that they better hook up into neural circuits, which underlie most of the brains computations.
However, neuromodulation goes a step further. Here, neurochemicals such as dopamine dont necessarily directly help wire up neural connections. Rather, they fine-tune how likely a neuron is to activate and link up with its neighbor. These so-called neuromodulators are similar to a temperature dial: depending on context, they either alert a neuron if it needs to calm down so that it only activates when receiving a larger input, or hype it up so that it jumps into action after a smaller stimuli.
Cellular neuromodulation provides the ability to continuously tune neuron input/output behaviors to shape their response to external stimuli in different contexts, the authors wrote. This level of adaptability especially comes into play when we try things that need continuous adjustments, such as how our feet strike uneven ground when running, or complex multitasking navigational tasks.
To be very clear, neuromodulation isnt directly changing synaptic weights. (Ughwhat?)
Stay with me. You might know that a neural network, either biological or artificial, is a bunch of neurons connected to each other through different strengths. How readily one neuron changes a neighboring neurons activityor how strongly theyre linkedis often called the synaptic weight.
Deep learning algorithms are made up of multiple layers of neurons linked to each other through adjustable weights. Traditionally, tweaking the strengths of these connections, or synaptic weights, is how a deep neural net learns (for those interested, the biological equivalent is dubbed synaptic plasticity).
However, neuromodulation doesnt directly act on weights. Rather, it alters how likely a neuron or network is to be capable of changing their connectionthat is, their flexibility.
Neuromodulation is a meta-level of control; so its perhaps not surprising that the new algorithm is actually composed of two separate neural networks.
The first is a traditional deep neural net, dubbed the main network. It processes input patterns and uses a custom method of activationhow likely a neuron in this network is to spark to life depends on the second network, or the neuromodulatory network. Here, the neurons dont process input from the environment. Rather, they deal with feedback and context to dynamically control the properties of the main network.
Especially important, said the authors, is that the modulatory network scales in size with the number of neurons in the main one, rather than the number of their connections. Its what makes the NMN different, they said, because this setup allows us to extend more easily to very large networks.
To gauge the adaptability of their new AI, the team pitted the NMN against traditional deep learning algorithms in a scenario using reinforcement learningthat is, learning through wins or mistakes.
In two navigational tasks, the AI had to learn to move towards several targets through trial and error alone. Its somewhat analogous to you trying to play hide-and-seek while blindfolded in a completely new venue. The first task is relatively simple, in which youre only moving towards a single goal and you can take off your blindfold to check where you are after every step. The second is more difficult in that you have to reach one of two marks. The closer you get to the actual goal, the higher the rewardcandy in real life, and a digital analogy for AI. If you stumble on the other, you get punishedthe AI equivalent to a slap on the hand.
Remarkably, NMNs learned both faster and better than traditional reinforcement learning deep neural nets. Regardless of how they started, NMNs were more likely to figure out the optimal route towards their target in much less time.
Over the course of learning, NMNs not only used their neuromodulatory network to change their main one, they also adapted the modulatory networktalk about meta! It means that as the AI learned, it didnt just flexibly adapt its learning; it also changed how it influences its own behavior.
In this way, the neuromodulatory network is a bit like a library of self-help booksyou dont just solve a particular problem, you also learn how to solve the problem. The more information the AI got, the faster and better it fine-tuned its own strategy to optimize learning, even when feedback wasnt perfect. The NMN also didnt like to give up: even when already performing well, the AI kept adapting to further improve itself.
Results show that neuromodulation is capable of adapting an agent to different tasks and that neuromodulation-based approaches provide a promising way of improving adaptation of artificial systems, the authors said.
The study is just the latest in a push to incorporate more biological learning mechanisms into deep learning. Were at the beginning: neuroscientists, for example, are increasingly recognizing the role of non-neuron brain cells in modulating learning, memory, and forgetting. Although computational neuroscientists have begun incorporating these findings into models of biological brains, so far AI researchers have largely brushed them aside.
Its difficult to know which brain mechanisms are necessary substrates for intelligence and which are evolutionary leftovers, but one thing is clear: neuroscience is increasingly providing AI with ideas outside its usual box.
Image Credit: Image by Gerd Altmann from Pixabay
View original post here:
Neuromodulation Is the Secret Sauce for This Adaptive, Fast-Learning AI - Singularity Hub
- Exclusive: NIH appears to archive policy requiring female animals in studies - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Roll On Down The Highway 2025 Tour coming to Neuroscience Group Field - WeAreGreenBay.com - February 25th, 2025 [February 25th, 2025]
- STEM organizations host Neuroscience Outreach Fair for local K-12 students - University of Virginia The Cavalier Daily - February 25th, 2025 [February 25th, 2025]
- Adapt or die: Safeguarding the future of diversity and inclusion funding in neuroscience - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- The last two-author neuroscience paper? - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Gate Neurosciences Strengthens Focus on the Synapse as a Therapeutic Target with Acquisition of Boost Neuroscience - Business Wire - February 25th, 2025 [February 25th, 2025]
- Why Firefly Neuroscience, Inc. (AIFF) Is Soaring This Year So Far - Yahoo Finance - February 25th, 2025 [February 25th, 2025]
- Breaking the barrier between theorists and experimentalists - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Preserving Brain Health and Advancing Neuroscience - University of Miami - February 25th, 2025 [February 25th, 2025]
- Science must step away from nationally managed infrastructure - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Repurposed Blood Pressure Drug May Treat ADHD - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- How to teach students about science funding - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Reflecting on 2024: Advancing Neuroscience Research to Improve Neurological Health - National Institute of Neurological Disorders and Stroke - February 25th, 2025 [February 25th, 2025]
- Brains Hidden Circuitry for Risk and Reward Uncovered - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- Why We Keep Exploring Even After Learning the Best Strategy - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- Unlocking Cellular Youth: The Protein That Reverses Aging - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- This paper changed my Life: Bill Newsome reflects on a quadrilogy of classic visual perception studies - The Transmitter: Neuroscience News and... - February 25th, 2025 [February 25th, 2025]
- Roundup: The false association between vaccines and autism - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- Static pay, shrinking prospects fuel neuroscience postdoc decline - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- Stimulating the brain with Damien Fair - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- Unhealthy Diet Linked to Faster Biological Aging in Young Adults - Neuroscience News - February 3rd, 2025 [February 3rd, 2025]
- Bob Smittcamp Family Neuroscience Institute coming to Fresno in 2026 - ABC30 News - February 3rd, 2025 [February 3rd, 2025]
- Norton Neuroscience Institute selected to pilot national Brain Health Navigator program - Norton Healthcare - February 3rd, 2025 [February 3rd, 2025]
- Coding bonus: Bats hippocampal cells log spatial, social cues - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- ADHD and brainwaves: How neuroscience is changing the way we diagnose the condition - PsyPost - February 3rd, 2025 [February 3rd, 2025]
- David Robbe challenges conventional notions of time and memory - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- How the Brain Processes Space and Time - Neuroscience News - February 3rd, 2025 [February 3rd, 2025]
- Using neuroscience to help establish healthier habits | Opinion - South Bend Tribune - February 3rd, 2025 [February 3rd, 2025]
- Solvonis chairman on heavy-hitting M&A in neuroscience sector - ICYMI - Proactive Investors UK - February 3rd, 2025 [February 3rd, 2025]
- New neuroscience research sheds light on distinct patterns of learning and generalization in autistic adults - PsyPost - January 23rd, 2025 [January 23rd, 2025]
- Neuroscientists need to do better at explaining basic mental health research - The Transmitter: Neuroscience News and Perspectives - January 23rd, 2025 [January 23rd, 2025]
- How Severance shows the possibilities of cognitive neuroscience - Fast Company - January 23rd, 2025 [January 23rd, 2025]
- AdventHealth Welcomes New Leadership In Heart and Vascular Services, Neuroscience and Orthopedics - Northwest Georgia News - January 23rd, 2025 [January 23rd, 2025]
- School of Neuroscience and Language Sciences Program recognized with University Exemplary Department or Program Award - Virginia Tech - January 23rd, 2025 [January 23rd, 2025]
- Early Exposure to Violent Media Linked to Teen Antisocial Behavior - Neuroscience News - January 23rd, 2025 [January 23rd, 2025]
- The Real Cognitive Neuroscience Behind Severance - WIRED - January 23rd, 2025 [January 23rd, 2025]
- The 15 most popular psychology and neuroscience studies in 2024 - PsyPost - January 1st, 2025 [January 1st, 2025]
- The 'lizard brain' lie: How neuroscience demolished the greatest mind myth - BBC Science Focus - January 1st, 2025 [January 1st, 2025]
- Revolutionizing Brain Diagnostics with Light and AI - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- How Early Experiences Shape Genes, Brain Health, and Resilience - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- A nation exhausted: The neuroscience of why Americans are tuning out political news - Indiana Capital Chronicle - January 1st, 2025 [January 1st, 2025]
- Lithium Restores Brain Function and Behavior in Autism - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- Partners in Diversity presents the science of belonging: exploring the neuroscience of inclusion - Here is Oregon - January 1st, 2025 [January 1st, 2025]
- Classical vs. Operant Conditioning: The Brain's Memory Tug-of-War - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Personality Gap Between Singles and the Partnered - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Neuroscience Behind Vermeers Girl and Its Hypnotic Power - ZME Science - January 1st, 2025 [January 1st, 2025]
- Serotonin, GABA, and Dopamine Drive Hunger and Feeding - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- A nation exhausted: The neuroscience of why Americans are tuning out politics - The Conversation - December 23rd, 2024 [December 23rd, 2024]
- UNO Goalie and Neuroscience Grad Shines in Her Athletic and Academic Aspirations - University of Nebraska Omaha - December 23rd, 2024 [December 23rd, 2024]
- Neuroscience Major Seeks to Bridge the Generation Gap, Help Alzheimers Patients - Pomona College - December 23rd, 2024 [December 23rd, 2024]
- Spectrum 2024: Year in review - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Say what? The Transmitters top quotes of 2024 - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Targeted or Broadcast? How the Brain Processes Visual Information - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- 70 Is the New 60: Age Related Declines Slowing in Older People - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- Breathing Rhythms During Sleep Strengthen Memory Consolidation - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- How our brains think: Exploring the world of neuroscience at the Yale Peabody Museum - Connecticut Public - December 23rd, 2024 [December 23rd, 2024]
- Assembloids illuminate circuit-level changes linked to autism, neurodevelopment - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Mapping the Brain's Response to Social Rejection - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- An eye for science: Q&A with Bryan W. Jones - The Transmitter: Neuroscience News and Perspectives - December 9th, 2024 [December 9th, 2024]
- Short Sleep and High Blood Pressure Linked to Brain Aging - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neighborhood Disadvantage Linked to Cognitive Health Risks - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Psychosis Risk Tied to Heavy Cannabis Use and Genetic Factors - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Most Teens Recover From Long Covid Within Two Years - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery - Nature.com - December 9th, 2024 [December 9th, 2024]
- How Evolution Shaped the Brains Understanding of Numbers - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neuroscience Study Aboard Cunard's Queen Mary 2 Reveals Cognitive Benefits of Slow Travel at Sea - PR Newswire - November 28th, 2024 [November 28th, 2024]
- How Expectations Shape Our Gaze in a Changing World - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- To keep or not to keep: Neurophysiologys data dilemma - The Transmitter: Neuroscience News and Perspectives - November 28th, 2024 [November 28th, 2024]
- Does Alcohol Consumption Contribute to Hair Loss? - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Brains Traffic Controllers Hold Key to Learning and Memory - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Despite Neuroscience Setback, AbbVie Has Strong Recovery Ahead (ABBV) - Seeking Alpha - November 28th, 2024 [November 28th, 2024]
- Neuroscientists reeling from past cuts advocate for more BRAIN Initiative funding - The Transmitter: Neuroscience News and Perspectives - November 28th, 2024 [November 28th, 2024]
- Want Better Habits? Neuroscience Says This Is How to Train Your Brain - Inc. - November 28th, 2024 [November 28th, 2024]
- Dopamine and Serotonin Work in Opposition for Effective Learning - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Cunard Proves the Healing Power of Ocean Travel with Breakthrough Neuroscience Research - Travel And Tour World - November 28th, 2024 [November 28th, 2024]
- Bridging the Gap between Meditation, Neuroscience, and the Soul - openPR - November 28th, 2024 [November 28th, 2024]
- Animal Characters in Childrens Books Boost Theory of Mind - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Emotional Struggles and Tantrums in Preschoolers Linked to ADHD - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Neuroscience Says This Simple Habit Improves Cognitive Health and Makes Your Brain Act Younger - Inc. - November 20th, 2024 [November 20th, 2024]
- Premature declarations on animal consciousness hinder progress - The Transmitter: Neuroscience News and Perspectives - November 20th, 2024 [November 20th, 2024]