Image credit: Depositphotos
Two separate studies, one by UK-based artificial intelligence lab DeepMind and the other by researchers in Germany and Greece, display the fascinating relations between AI and neuroscience.
As most scientists will tell you, we are still decades away from building artificial general intelligence, machines that can solve problems as efficiently as humans. On the path to creating general AI, the human brain, arguably the most complex creation of nature, is the best guide we have.
Advances in neuroscience, the study of nervous systems, provide interesting insights into how the brain works, a key component for developing better AI systems. Reciprocally, the development of better AI systems can help drive neuroscience forward and further unlock the secrets of the brain.
For instance, convolutional neural networks (CNN), one of the key contributors to recent advances in artificial intelligence, are largely inspired by neuroscience research on the visual cortex. On the other hand, neuroscientist leverage AI algorithms to study millions of signals from the brain and find patterns that would have gone. The two fields are closely related and their synergies produce very interesting results.
Recent discoveries in neuroscience show what were doing right in AI, and what weve got wrong.
A recent study by researchers at DeepMind prove that AI research (at least part of it) is headed in the right direction.
Thanks to neuroscience, we know that one of the basic mechanisms through which humans and animals learn is rewards and punishments. Positive outcomes encourage us to repeat certain tasks (do sports, study for exams, etc.) while negative results detract us from repeating mistakes (touch a hot stove).
The reward and punishment mechanism is best known by the experiments of Russian physiologist Ivan Pavlov, who trained dogs to expect food whenever they hear a bell. We also know that dopamine, a neurotransmitter chemical produced in the midbrain, plays a great role in regulating the reward functions of the brain.
Reinforcement learning, one of the hottest areas of artificial intelligence research, has been roughly fashioned after the reward/punishment mechanism of the brain. In RL, an AI agent is set to explore a problem space and try different actions. For each action it performs, the agent receives a numerical reward or penalty. Through massive trial and error and by examining the outcome of its actions, the AI agent develops a mathematical model optimized to maximize rewards and avoiding penalties. (In reality, its a bit more complicated and involves dealing with exploration and exploitation and other challenges.)
More recently, AI researchers have been focusing on distributional reinforcement learning to create better models. The basic idea behind distributional RL is to use multiple factors to predict rewards and punishments in a spectrum of optimistic and pessimistic ways. Distributional reinforcement learning has been pivotal in creating AI agents that are more resilient to changes in their environments.
The new research, jointly done by Harvard University and DeepMind and published in Nature last week, has found properties in the brain of mice that are very similar to those of distributional reinforcement learning. The AI researchers measured dopamine firing rates in the brain to examine the variance in reward prediction rates of biological neurons.
Interestingly, the same optimism and pessimism mechanism that AI scientists had programmed in distributional reinforcement learning models was found in the nervous system of mice. In summary, we found that dopamine neurons in the brain were each tuned to different levels of pessimism or optimism, DeepMinds researchers wrote in a blog post published on the AI labs website. In artificial reinforcement learning systems, this diverse tuning creates a richer training signal that greatly speeds learning in neural networks, and we speculate that the brain might use it for the same reason.
What makes this finding special is that while AI research usually takes inspiration from neuroscience discovery, in this case, neuroscience research has validated AI discoveries. It gives us increased confidence that AI research is on the right track, since this algorithm is already being used in the most intelligent entity were aware of: the brain, the researchers write.
It will also lay the groundwork for further research in neuroscience, which will, in turn, benefit the field of AI.
While DeepMinds new findings confirmed the work done in AI reinforcement learning research, another research by scientists in Berlin, this time published in Science in early January, proves that some of the fundamental assumptions we made about the brain are quite wrong.
The general belief about the structure of the brain is that neurons, the basic component of the nervous system are simple integrators that calculate the weighted sum of their inputs. Artificial neural networks, a popular type of machine learning algorithm, have been designed based on this belief.
Alone, an artificial neuron performs a very simple operation. It takes several inputs, multiplies them by predefined weights, sums them and runs them through an activation function. But when connecting thousands and millions (and billions) of artificial neurons in multiple layers, you obtain a very flexible mathematical function that can solve complex problems such as detecting objects in images or transcribing speech.
Multi-layered networks of artificial neurons, generally called deep neural networks, are the main drive behind the deep learning revolution in the past decade.
But the general perception of biological neurons being dumb calculators of basic math is overly simplistic. The recent findings of the German researchers, which were later corroborated by neuroscientists at a lab in Greece, proved that single neurons can perform XOR operations, a premise that was rejected by AI pioneers such as Marvin Minsky and Seymour Papert.
While not all neurons have this capability, the implications of the finding are significant. For instance, it might mean that a single neuron might contain a deep network within itself. Konrad Kording, a computational neuroscientist at the University of Pennsylvania who was not involved in the research, told Quanta Magazine that the finding could mean a single neuron may be able to compute truly complex functions. For example, it might, by itself, be able to recognize an object.
What does this mean for artificial intelligence research? At the very least, it means that we need to rethink our modeling of neurons. It might spur research in new artificial neuron structures and networks with different types of neurons. Maybe it might help free us from the trap of having to build extremely large neural networks and datasets to solve very simple problems.
The whole gameto come up with how you get smart cognition out of dumb neuronsmight be wrong, cognitive scientist Gary Marcus, who also spoke to Quanta, said in this regard.
More:
Neuroscience shows whats right and wrong with AI - TechTalks
- Myosin Therapeutics Closes Second Seed Round to Advance Clinical Trials for Innovative Cancer and Neuroscience Therapies - PR Newswire - March 5th, 2025 [March 5th, 2025]
- Neuroscience Ph.D. programs adjust admissions in response to U.S. funding uncertainty - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- New tools help make neuroimaging accessible to more researchers - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- Future Thinking Training Reduces Impulsivity - Neuroscience News - March 5th, 2025 [March 5th, 2025]
- Null and Noteworthy, relaunched: Probing a schizophrenia biomarker - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- How to communicate the value of curiosity-driven research - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- Cognitive neuroscience approach to explore the impact of wind turbine noise on various mental functions - Nature.com - March 5th, 2025 [March 5th, 2025]
- Football on the Brain: Helping coaches embed neuroscience knowledge - Training Ground Guru - March 5th, 2025 [March 5th, 2025]
- Taking Control: Using Neuroscience to Build Better Lives - theLoop - March 5th, 2025 [March 5th, 2025]
- Creating a pipeline of talent to feed the growth of Neuroscience: Lessons from Ghana - Myjoyonline - March 5th, 2025 [March 5th, 2025]
- Exclusive: NIH appears to archive policy requiring female animals in studies - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Roll On Down The Highway 2025 Tour coming to Neuroscience Group Field - WeAreGreenBay.com - February 25th, 2025 [February 25th, 2025]
- STEM organizations host Neuroscience Outreach Fair for local K-12 students - University of Virginia The Cavalier Daily - February 25th, 2025 [February 25th, 2025]
- Adapt or die: Safeguarding the future of diversity and inclusion funding in neuroscience - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- The last two-author neuroscience paper? - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Gate Neurosciences Strengthens Focus on the Synapse as a Therapeutic Target with Acquisition of Boost Neuroscience - Business Wire - February 25th, 2025 [February 25th, 2025]
- Why Firefly Neuroscience, Inc. (AIFF) Is Soaring This Year So Far - Yahoo Finance - February 25th, 2025 [February 25th, 2025]
- Breaking the barrier between theorists and experimentalists - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Preserving Brain Health and Advancing Neuroscience - University of Miami - February 25th, 2025 [February 25th, 2025]
- Science must step away from nationally managed infrastructure - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Repurposed Blood Pressure Drug May Treat ADHD - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- How to teach students about science funding - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Reflecting on 2024: Advancing Neuroscience Research to Improve Neurological Health - National Institute of Neurological Disorders and Stroke - February 25th, 2025 [February 25th, 2025]
- Brains Hidden Circuitry for Risk and Reward Uncovered - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- Why We Keep Exploring Even After Learning the Best Strategy - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- Unlocking Cellular Youth: The Protein That Reverses Aging - Neuroscience News - February 25th, 2025 [February 25th, 2025]
- This paper changed my Life: Bill Newsome reflects on a quadrilogy of classic visual perception studies - The Transmitter: Neuroscience News and... - February 25th, 2025 [February 25th, 2025]
- Roundup: The false association between vaccines and autism - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- Static pay, shrinking prospects fuel neuroscience postdoc decline - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- Stimulating the brain with Damien Fair - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- Unhealthy Diet Linked to Faster Biological Aging in Young Adults - Neuroscience News - February 3rd, 2025 [February 3rd, 2025]
- Bob Smittcamp Family Neuroscience Institute coming to Fresno in 2026 - ABC30 News - February 3rd, 2025 [February 3rd, 2025]
- Norton Neuroscience Institute selected to pilot national Brain Health Navigator program - Norton Healthcare - February 3rd, 2025 [February 3rd, 2025]
- Coding bonus: Bats hippocampal cells log spatial, social cues - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- ADHD and brainwaves: How neuroscience is changing the way we diagnose the condition - PsyPost - February 3rd, 2025 [February 3rd, 2025]
- David Robbe challenges conventional notions of time and memory - The Transmitter: Neuroscience News and Perspectives - February 3rd, 2025 [February 3rd, 2025]
- How the Brain Processes Space and Time - Neuroscience News - February 3rd, 2025 [February 3rd, 2025]
- Using neuroscience to help establish healthier habits | Opinion - South Bend Tribune - February 3rd, 2025 [February 3rd, 2025]
- Solvonis chairman on heavy-hitting M&A in neuroscience sector - ICYMI - Proactive Investors UK - February 3rd, 2025 [February 3rd, 2025]
- New neuroscience research sheds light on distinct patterns of learning and generalization in autistic adults - PsyPost - January 23rd, 2025 [January 23rd, 2025]
- Neuroscientists need to do better at explaining basic mental health research - The Transmitter: Neuroscience News and Perspectives - January 23rd, 2025 [January 23rd, 2025]
- How Severance shows the possibilities of cognitive neuroscience - Fast Company - January 23rd, 2025 [January 23rd, 2025]
- AdventHealth Welcomes New Leadership In Heart and Vascular Services, Neuroscience and Orthopedics - Northwest Georgia News - January 23rd, 2025 [January 23rd, 2025]
- School of Neuroscience and Language Sciences Program recognized with University Exemplary Department or Program Award - Virginia Tech - January 23rd, 2025 [January 23rd, 2025]
- Early Exposure to Violent Media Linked to Teen Antisocial Behavior - Neuroscience News - January 23rd, 2025 [January 23rd, 2025]
- The Real Cognitive Neuroscience Behind Severance - WIRED - January 23rd, 2025 [January 23rd, 2025]
- The 15 most popular psychology and neuroscience studies in 2024 - PsyPost - January 1st, 2025 [January 1st, 2025]
- The 'lizard brain' lie: How neuroscience demolished the greatest mind myth - BBC Science Focus - January 1st, 2025 [January 1st, 2025]
- Revolutionizing Brain Diagnostics with Light and AI - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- How Early Experiences Shape Genes, Brain Health, and Resilience - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- A nation exhausted: The neuroscience of why Americans are tuning out political news - Indiana Capital Chronicle - January 1st, 2025 [January 1st, 2025]
- Lithium Restores Brain Function and Behavior in Autism - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- Partners in Diversity presents the science of belonging: exploring the neuroscience of inclusion - Here is Oregon - January 1st, 2025 [January 1st, 2025]
- Classical vs. Operant Conditioning: The Brain's Memory Tug-of-War - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Personality Gap Between Singles and the Partnered - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Neuroscience Behind Vermeers Girl and Its Hypnotic Power - ZME Science - January 1st, 2025 [January 1st, 2025]
- Serotonin, GABA, and Dopamine Drive Hunger and Feeding - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- A nation exhausted: The neuroscience of why Americans are tuning out politics - The Conversation - December 23rd, 2024 [December 23rd, 2024]
- UNO Goalie and Neuroscience Grad Shines in Her Athletic and Academic Aspirations - University of Nebraska Omaha - December 23rd, 2024 [December 23rd, 2024]
- Neuroscience Major Seeks to Bridge the Generation Gap, Help Alzheimers Patients - Pomona College - December 23rd, 2024 [December 23rd, 2024]
- Spectrum 2024: Year in review - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Say what? The Transmitters top quotes of 2024 - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Targeted or Broadcast? How the Brain Processes Visual Information - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- 70 Is the New 60: Age Related Declines Slowing in Older People - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- Breathing Rhythms During Sleep Strengthen Memory Consolidation - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- How our brains think: Exploring the world of neuroscience at the Yale Peabody Museum - Connecticut Public - December 23rd, 2024 [December 23rd, 2024]
- Assembloids illuminate circuit-level changes linked to autism, neurodevelopment - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Mapping the Brain's Response to Social Rejection - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- An eye for science: Q&A with Bryan W. Jones - The Transmitter: Neuroscience News and Perspectives - December 9th, 2024 [December 9th, 2024]
- Short Sleep and High Blood Pressure Linked to Brain Aging - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neighborhood Disadvantage Linked to Cognitive Health Risks - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Psychosis Risk Tied to Heavy Cannabis Use and Genetic Factors - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Most Teens Recover From Long Covid Within Two Years - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery - Nature.com - December 9th, 2024 [December 9th, 2024]
- How Evolution Shaped the Brains Understanding of Numbers - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neuroscience Study Aboard Cunard's Queen Mary 2 Reveals Cognitive Benefits of Slow Travel at Sea - PR Newswire - November 28th, 2024 [November 28th, 2024]
- How Expectations Shape Our Gaze in a Changing World - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- To keep or not to keep: Neurophysiologys data dilemma - The Transmitter: Neuroscience News and Perspectives - November 28th, 2024 [November 28th, 2024]
- Does Alcohol Consumption Contribute to Hair Loss? - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Brains Traffic Controllers Hold Key to Learning and Memory - Neuroscience News - November 28th, 2024 [November 28th, 2024]