Summary: Researchers present a new system that uses photons instead of chemical neurotransmitters to control neural activity.
Source: ICFO
Our brains are made of billions of neurons, which are connected forming complex networks. They communicate between themselves by sending electrical signals, known as action potentials, and chemical signals, known as neurotransmitters, in a process called synaptic transmission.
Chemical neurotransmitters are released from one neuron, diffuse to the others and arrive at the targeted cells, generating a signal which excites, inhibits or modulates the cellular activity. The timing and strength of these signals are crucial for the brain to process and interpret sensory information, make decisions, and generate behavior.
Controlling the connections between the neurons would allow us to understand and treat better neurological disorders, rewire or repair the malfunctions of the neural circuits after being damaged, improve our learning capabilities or expand our set of behaviours. There are several approaches to controlling neuronal activity.
One possible method is using drugs, that alter the levels of the chemical neurotransmitters in the brain and affect the activity of neurons. Another approach is to use electrical stimulation applied to specific brain regions to activate or inhibit the neurons. A third possibility is using light to control neural activity.
Using photons to control the neuronal activity
Using light to manipulate neuronal activity is a relatively new technique that has been explored in the past. It involves genetically modifying neurons to express light-sensitive proteins, ion channels, pumps or specific enzymes in the target cells. This technique allows researchers to precisely control the activity of concrete populations of neurons with higher precision.
There are, however, some limitations. It needs to be delivered very close to the neurons to achieve enough resolution at the level of the synapsis, as light scatters in the brain tissue. Thus, it is often invasive, requiring external interventions. Moreover, the intensity needed to reach the targeted cells can be potentially harmful to them.
To overcome these challenges, a team of ICFO researchers presents inNature Methodsa system that uses photons instead of chemical neurotransmitters as a strategy to control neuronal activity.
The ICFO researchersMontserrat Porta,Adriana Carolina Gonzlez,Neus Sanfeliu-Cerdn,Shadi Karimi,Nawaphat Malaiwong,Aleksandra Pidde,Luis Felipe MoralesandSara Gonzlez-Bolvarled byProf. Michael Kriegtogether withPablo FernndezandCedric Hurth, have developed a method to connect two neurons by using luciferases, light-emitting enzymes, and light-sensitive ion channels.
They have developed and tested a system named PhAST -short for Photons as synaptic transmitters- in the roundwormCaenorhabditis elegans, a model organism widely used to study specific biological processes. Resembling how the bioluminescent animals use photons to communicate, PhAST uses the enzymes luciferases to send photons, instead of chemicals, as transmitters between neurons.
Replacing chemical neurotransmitters with photons
To test if photons could codify and transmit the activity state between two neurons, the team genetically modified the roundworms to have faulty neurotransmitters, making them insensitive to mechanical stimuli. They aimed to overcome those defects using the PhAST system. Secondly, they engineered light-emitting enzymes luciferases and selected ion channels that were sensitive to light.
To follow the information flow, they developed a device that delivered mechanical stresses to the animals nose while measuring, at the same time, the calcium activity in the sensory neurons, one of the most important ions and intracellular messengers.
To be able to see the photons and study bioluminescence, the team had previously designed a new microscope by simplifying a fluorescence one, removing all the unnecessary optical elements such as filters, mirrors, or the laser itself, assisted with machine learning to reduce the noise coming from the external sources of light.
Researchers then tested that the PhAST system worked in several experiments and succeeded in using photons to transmit neuronal states. They were able to establish a new transmission between two unconnected cells, restoring neuronal communication in a defective circuit.
They also suppressed the animals response to a painful stimulus, changed their response to an olfactory stimulus from attractive to aversive behavior and studied the calcium dynamics when laying the eggs.
These results demonstrate that photons can indeed act as neurotransmitters and allow communication between neurons and that the PhAST system allows the synthetic modification of animal behavior.
The potential of light as a messenger
Light as a messenger offers a broad scope for future potential applications. As photons can be used in other types of cells and several animal species, it has wide-ranging implications for both basic research and clinical applications in neuroscience.
Using light to control and monitor neuronal activity can help researchers better understand the underlying mechanisms of brain function and complex behaviors, and how different brain regions communicate with each other, providing new ways of imaging and mapping brain activity with higher spatial and temporal resolution. It could also help researchers develop new treatments, and for example, be useful for repairing damaged brain connections without invasive surgeries.
However, there are still some limitations to the widespread use of the technology, and further improvements in the engineering of the bioluminescent enzymes and the ion channels or in the targeting of molecules would allow controlling optically the neuronal function, non-invasively and with higher specificity and precision.
Author: Alina HirschmannSource: ICFOContact: Alina Hirschmann ICFOImage: The image is credited to ICFO
Original Research: Closed access.Neural engineering with photons as synaptic transmitters by Montserrat Porta-de-la-Riva et al. Nature Methods
Abstract
Neural engineering with photons as synaptic transmitters
Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system.
PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters.
PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of theCaenorhabditis elegansnociceptive avoidance circuit.
To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit.
Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.
More here:
Using Photons as Neurotransmitters to Control the Activity of Neurons - Neuroscience News
- The 15 most popular psychology and neuroscience studies in 2024 - PsyPost - January 1st, 2025 [January 1st, 2025]
- The 'lizard brain' lie: How neuroscience demolished the greatest mind myth - BBC Science Focus - January 1st, 2025 [January 1st, 2025]
- Revolutionizing Brain Diagnostics with Light and AI - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- How Early Experiences Shape Genes, Brain Health, and Resilience - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- A nation exhausted: The neuroscience of why Americans are tuning out political news - Indiana Capital Chronicle - January 1st, 2025 [January 1st, 2025]
- Lithium Restores Brain Function and Behavior in Autism - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- Partners in Diversity presents the science of belonging: exploring the neuroscience of inclusion - Here is Oregon - January 1st, 2025 [January 1st, 2025]
- Classical vs. Operant Conditioning: The Brain's Memory Tug-of-War - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Personality Gap Between Singles and the Partnered - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Neuroscience Behind Vermeers Girl and Its Hypnotic Power - ZME Science - January 1st, 2025 [January 1st, 2025]
- Serotonin, GABA, and Dopamine Drive Hunger and Feeding - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- A nation exhausted: The neuroscience of why Americans are tuning out politics - The Conversation - December 23rd, 2024 [December 23rd, 2024]
- UNO Goalie and Neuroscience Grad Shines in Her Athletic and Academic Aspirations - University of Nebraska Omaha - December 23rd, 2024 [December 23rd, 2024]
- Neuroscience Major Seeks to Bridge the Generation Gap, Help Alzheimers Patients - Pomona College - December 23rd, 2024 [December 23rd, 2024]
- Spectrum 2024: Year in review - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Say what? The Transmitters top quotes of 2024 - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Targeted or Broadcast? How the Brain Processes Visual Information - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- 70 Is the New 60: Age Related Declines Slowing in Older People - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- Breathing Rhythms During Sleep Strengthen Memory Consolidation - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- How our brains think: Exploring the world of neuroscience at the Yale Peabody Museum - Connecticut Public - December 23rd, 2024 [December 23rd, 2024]
- Assembloids illuminate circuit-level changes linked to autism, neurodevelopment - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Mapping the Brain's Response to Social Rejection - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- An eye for science: Q&A with Bryan W. Jones - The Transmitter: Neuroscience News and Perspectives - December 9th, 2024 [December 9th, 2024]
- Short Sleep and High Blood Pressure Linked to Brain Aging - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neighborhood Disadvantage Linked to Cognitive Health Risks - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Psychosis Risk Tied to Heavy Cannabis Use and Genetic Factors - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Most Teens Recover From Long Covid Within Two Years - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery - Nature.com - December 9th, 2024 [December 9th, 2024]
- How Evolution Shaped the Brains Understanding of Numbers - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neuroscience Study Aboard Cunard's Queen Mary 2 Reveals Cognitive Benefits of Slow Travel at Sea - PR Newswire - November 28th, 2024 [November 28th, 2024]
- How Expectations Shape Our Gaze in a Changing World - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- To keep or not to keep: Neurophysiologys data dilemma - The Transmitter: Neuroscience News and Perspectives - November 28th, 2024 [November 28th, 2024]
- Does Alcohol Consumption Contribute to Hair Loss? - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Brains Traffic Controllers Hold Key to Learning and Memory - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Despite Neuroscience Setback, AbbVie Has Strong Recovery Ahead (ABBV) - Seeking Alpha - November 28th, 2024 [November 28th, 2024]
- Neuroscientists reeling from past cuts advocate for more BRAIN Initiative funding - The Transmitter: Neuroscience News and Perspectives - November 28th, 2024 [November 28th, 2024]
- Want Better Habits? Neuroscience Says This Is How to Train Your Brain - Inc. - November 28th, 2024 [November 28th, 2024]
- Dopamine and Serotonin Work in Opposition for Effective Learning - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Cunard Proves the Healing Power of Ocean Travel with Breakthrough Neuroscience Research - Travel And Tour World - November 28th, 2024 [November 28th, 2024]
- Bridging the Gap between Meditation, Neuroscience, and the Soul - openPR - November 28th, 2024 [November 28th, 2024]
- Animal Characters in Childrens Books Boost Theory of Mind - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Emotional Struggles and Tantrums in Preschoolers Linked to ADHD - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Neuroscience Says This Simple Habit Improves Cognitive Health and Makes Your Brain Act Younger - Inc. - November 20th, 2024 [November 20th, 2024]
- Premature declarations on animal consciousness hinder progress - The Transmitter: Neuroscience News and Perspectives - November 20th, 2024 [November 20th, 2024]
- Medtronic Q2 Earnings: Diabetes And Neuroscience Revenue Boost Growth, Raises Annual Outlook - Yahoo Finance - November 20th, 2024 [November 20th, 2024]
- Trace Neuroscience Nets $101M in Series A Funding for ALS, Dementia Therapy Development - Senior Housing News - November 20th, 2024 [November 20th, 2024]
- How to be a multidisciplinary neuroscientist - The Transmitter: Neuroscience News and Perspectives - November 20th, 2024 [November 20th, 2024]
- Neuroscience Market Expected to Reach USD 71.0 Billion by - GlobeNewswire - November 20th, 2024 [November 20th, 2024]
- Finger-Prick Test Brings Alzheimers Detection Closer to Everyone - Neuroscience News - November 20th, 2024 [November 20th, 2024]
- Dual-Gene Therapy Shows Promise for Hearing and Vision Loss - Neuroscience News - November 20th, 2024 [November 20th, 2024]
- Robots Help Unlock the Mystery of Human Sense of Self - Neuroscience News - November 20th, 2024 [November 20th, 2024]
- The neuroscience of sleep - University of South Carolina - November 20th, 2024 [November 20th, 2024]
- Stress warps fear memories in multiple ways - The Transmitter: Neuroscience News and Perspectives - November 20th, 2024 [November 20th, 2024]
- Mental Exhaustion Drives Aggressive Behavior - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- NeuroAI: A field born from the symbiosis between neuroscience, AI - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- The neuroscience of deeper learning in math - SmartBrief - November 12th, 2024 [November 12th, 2024]
- What the brain can teach artificial neural networks - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- How Anthony Zador thinks neuroscience can help improve AI - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Discovering Cancer Therapies through Neuroscience - The New York Academy of Sciences - November 12th, 2024 [November 12th, 2024]
- Neuroscience Market Projected to Reach USD 50.2 Billion by 2032, Growing at a 4.0% CAGR S&S Insider - GlobeNewswire - November 12th, 2024 [November 12th, 2024]
- Insights on Brain Aging and Lifelong Cognitive Health - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- A neuroscience PhD student at the University of Oxford has died - The Tab - November 12th, 2024 [November 12th, 2024]
- Exploring the connection between autism and sleep - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Astrocytes star in memory storage, recall - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Gut Bacteria Modulate Stress Responses Over Time - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- Gut Bacteria Could Hold the Key to Promoting Healthy Aging - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- Microglias pruning function called into question - The Transmitter: Neuroscience News and Perspectives - October 26th, 2024 [October 26th, 2024]
- Depression Alters Brain Circuits, Heightening Negative Perception - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- UNE Researchers Showcase Groundbreaking Work at Global Neuroscience Conference - University of New England - October 26th, 2024 [October 26th, 2024]
- Scientists discover "glue" that holds memory together in fascinating neuroscience breakthrough - PsyPost - October 26th, 2024 [October 26th, 2024]
- Systems neuroscience: combining theory and neurotechnology for a multiscale account of the brain - Nature.com - October 26th, 2024 [October 26th, 2024]
- Seaport Therapeutics adds another $225 million to coffers to embrace the golden age of neuroscience - STAT - October 26th, 2024 [October 26th, 2024]
- ANRO Investors Have Opportunity to Join Alto Neuroscience, Inc. Fraud Investigation with the Schall Law Firm - Business Wire - October 26th, 2024 [October 26th, 2024]
- Youth Face Rising Risks of Harassment and Exploitation in the Metaverse - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Exercise During Chemotherapy Boosts Cognitive Function - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Removing Pre-Bed Screen Time Improves Toddler Sleep - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Bright Minds Biosciences and Firefly Neuroscience to Collaborate After the BREAKTHROUGH Study: A Phase 2 Trial of BMB-101 in Absence Epilepsy and... - October 26th, 2024 [October 26th, 2024]
- How Visual Clutter Disrupts Information Flow in the Brain - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Menopausal Hormone Therapys Effects on Brain Health - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- After-hours movers: McDonald's, Starbucks, Seagate, Alto Neuroscience and more - StreetInsider.com - October 26th, 2024 [October 26th, 2024]