Physiological responses of Atlantic cod to climate change indicate that coastal ecotypes may be better adapted to … – Nature.com

Berg, M. P. et al. Adapt or disperse: Understanding species persistence in a changing world. Glob. Chang. Biol. 16, 587598 (2010).

Article ADS Google Scholar

Rocha, J. C., Peterson, G. D. & Biggs, R. Regime shifts in the anthropocene: Drivers, risks, and resilience. PLoS One 10, 116 (2015).

Article Google Scholar

Ratajczak, Z. et al. Abrupt change in ecological systems: Inference and diagnosis. Trends Ecol. Evol. 33, 513526 (2018).

Article PubMed Google Scholar

Nagelkerken, I. & Connell, S. D. Ocean acidification drives global reshuffling of ecological communities. Glob. Chang. Biol. 28, 70387048 (2022).

Article CAS PubMed PubMed Central Google Scholar

Woodson, C. B. et al. Harnessing marine microclimates for climate change adaptation and marine conservation. Conserv. Lett. 12, 19 (2019).

Article Google Scholar

Lake, P. S. Resistance, resilience and restoration. Ecol. Manag. Restor. 14, 2024 (2013).

Article Google Scholar

Boyd, P. W. et al. Multiple Ocean Stressors: A Scientific Summary for Policy Makers. (2022). https://doi.org/10.25607/OBP-1724

Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Bio. Ecol. 400, 716 (2011).

Article Google Scholar

Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 118 (2018).

Article Google Scholar

Falkenberg, L. J., Burnell, O. W., Connell, S. D. & Russell, B. D. Sustainability in near-shore marine systems: Promoting natural resilience. Sustainability 2, 25932600 (2010).

Article CAS Google Scholar

Halpern, B. S. et al. Recent pace of change in human impact on the worlds ocean. Sci. Rep. 9, 18 (2019).

Article CAS Google Scholar

Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the worlds ocean. Nat. Commun. 6, 7615 (2015).

Article ADS CAS PubMed Google Scholar

Eero, M. et al. Eastern Baltic cod in distress: Biological changes and challenges for stock assessment. ICES J. Mar. Sci. 72, 21802186 (2015).

Article Google Scholar

Eero, M. et al. New insights into the recent collapse of Eastern Baltic cod from historical data on stock health. PLoS One 18, 120 (2023).

Article Google Scholar

Receveur, A. et al. Western Baltic cod in distress: Decline in energy reserves since 1977. ICES J. Mar. Sci. 79, 11871201 (2022).

Article Google Scholar

Baden, S., Emanuelsson, A., Pihl, L., Svensson, C. & berg, P. Shift in seagrass food web structure over decades is linked to overfishing. Mar. Ecol. Prog. Ser. 451, 6173 (2012).

Article ADS Google Scholar

Svensson, F., Svenson, A., Jacobsson, P., Hentati-sundberg, J. & Wennhage, H. Rapport fr 2018 rs kusttrlunderskning av kustnra fiskbestnd lngs den svenska vstkusten. (2019).

Bergstrm, U., Skld, M., Wennhage, H. & Wikstrm, A. Ekologiska effekter av fiskefria omrden i Sveriges kust- och havsomrden. (2016).

Svensson, F., Andersson, L. & Holmes, A. Kusttrlunderskning 2022: vervakning av bottenlevande fisk lngs svenska vstkusten. (2023).

Andersson, E., Hgvall, J. & Larsson, R. Kusttrlunderskningen 2021: Expeditionsrapport. (2021).

Bergstrm, U. et al. Long-term effects of no-take zones in Swedish waters. (2022). https://doi.org/10.54612/a.10da2mgf51

Cardinale, M. & Svedng, H. Modelling recruitment and abundance of Atlantic cod, Gadus morhua, in the eastern Skagerrak-Kattegat (North Sea): Evidence of severe depletion due to a prolonged period of high fishing pressure. Fish. Res. 69, 263282 (2004).

Article Google Scholar

Kjesbu, O. S. et al. Latitudinally distinct stocks of Atlantic cod face fundamentally different biophysical challenges under on-going climate change. Fish Fish. 24, 297320 (2023).

Article Google Scholar

Vuorinen, I. et al. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas-implications for environmental monitoring. Ecol. Indic. 50, 196205 (2015).

Article PubMed PubMed Central Google Scholar

Meier, H. E. M. et al. Transient scenario simulations for the Baltic Sea Region during the 21st century. Oceanografi 108, (2011).

Meier, H. E. M., Eilola, K. & Almroth, E. Climate-related changes in marine ecosystems simulated with a 3-dimensional coupled physical-biogeochemical model of the Baltic sea. Clim. Res. 48, 3155 (2011).

Article Google Scholar

Meier, H. E. M. et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 19612099. Clim. Dyn. 39, 24212441 (2012).

Article Google Scholar

Philippart, C. J. M. et al. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. J. Exp. Mar. Bio. Ecol. 400, 5269 (2011).

Article Google Scholar

Perry, D., Hammar, L., Linderholm, H. W. & Gullstrm, M. Spatial risk assessment of global change impacts on Swedish seagrass ecosystems. PLoS One 15, 116 (2020).

Article Google Scholar

Stl, J. et al. Coastal habitat support to fish and fisheries in Sweden: Integrating ecosystem functions into fisheries management. Ocean Coast. Manag. 51, 594600 (2008).

Article Google Scholar

Pihl, L. et al. Shift in fish assemblage structure due to loss of seagrass Zostera marina habitats in Sweden. Estuar. Coast. Shelf Sci. 67, 123132 (2006).

Article ADS Google Scholar

Sodeland, M. et al. Stabilizing selection on Atlantic cod supergenes through a millennium of extensive exploitation. Proc. Natl. Acad. Sci. USA 119, e2114904119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Henriksson, S. et al. Mixed origin of juvenile Atlantic cod (Gadus morhua) along the Swedish west coast. ICES J. Mar. Sci. 80, 145157 (2023).

Article Google Scholar

Casini, M. et al. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. PNAS 106, 197202 (2008).

Article ADS PubMed PubMed Central Google Scholar

Svedng, H. & Bardon, G. Spatial and temporal aspects of the decline in cod (Gadus morhua L.) abundance in the Kattegat and eastern Skagerrak. ICES J. Mar. Sci. 60, 3237 (2003).

Article Google Scholar

Pihl, L. & Wennhage, H. Structure and diversity of fish assemblages on rocky and soft bottom shores on the Swedish west coast. J. Fish Biol. 61, 148166 (2002).

Article Google Scholar

Wennhage, H. & Pihl, L. Fish feeding guilds in shallow rocky and soft bottom areas on the Swedish west coast. J. Fish Biol. 61, 207228 (2002).

Article Google Scholar

Staveley, T. A. B., Perry, D., Lindborg, R. & Gullstrm, M. Seascape structure and complexity influence temperate seagrass fish assemblage composition. Ecography (Cop.) 40, 936946 (2017).

Article ADS Google Scholar

Perry, D., Staveley, T. A. B. & Gullstrm, M. Habitat connectivity of fish in temperate shallow-water seascapes. Front. Mar. Sci. 4, 112 (2018).

Article Google Scholar

Perry, D. et al. Temperate fish community variation over seasons in relation to large-scale geographic seascape variables. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2017-0032 (2017).

Article Google Scholar

Prtner, H. O. & Farrell, A. P. Physiology and climate change. Science (80-) 80(322), 690692 (2008).

Article Google Scholar

Petersen, M. F. & Steffensen, J. F. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J. Exp. Biol. 206, 359364 (2003).

Article CAS PubMed Google Scholar

Koenigstein, S., Mark, F. C., Gling-Reisemann, S., Reuter, H. & Poertner, H. O. Modelling climate change impacts on marine fish populations: Process-based integration of ocean warming, acidification and other environmental drivers. Fish Fish. 17, 9721004 (2016).

Article Google Scholar

Grns, A. et al. Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. J. Exp. Biol. 217, 711717. https://doi.org/10.1242/jeb.096743 (2014).

Article PubMed Google Scholar

Sturve, J., Hasselberg, L., Flth, H., Celander, M. & Frlin, L. Effects of North Sea oil and alkylphenols on biomarker responses in juvenile Atlantic cod (Gadus morhua). Aquat. Toxicol. 78, 7378 (2006).

Article Google Scholar

Birnie-Gauvin, K., Costantini, D., Cooke, S. J. & Willmore, W. G. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish Fish. 18, 928942 (2017).

Article Google Scholar

Kreiss, C. M. et al. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua). J Comp. Physiol. B Biochem. Syst. Environ. Physiol. 185, 767781 (2015).

Article CAS Google Scholar

Carney Almroth, B., Albertsson, E., Sturve, J. & Frlin, L. Oxidative stress, evident in antioxidant defences and damage products, in rainbow trout caged outside a sewage treatment plant. Ecotoxicol. Environ. Saf. 70, 370378 (2008).

Article CAS PubMed Google Scholar

Hernroth, B., Nilsson, H., Wiklander, K., Jutfelt, F. & Baden, S. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus. Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2012.08.011 (2012).

Article PubMed Google Scholar

Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and biology of ageing. Nat. Insight Rev. Artic. Rev. Artic. 408, 239247 (2000).

CAS Google Scholar

Hellou, J., Ross, N. W. & Moon, T. W. Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ. Sci. Pollut. Res. 19, 20072023 (2012).

Article CAS Google Scholar

Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Chang. 6, 8993 (2015).

Article ADS Google Scholar

Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl. Acad. Sci. 2015, 201510856 (2015).

Google Scholar

Nissling, A., Westin, L. & Hjerne, O. Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Pleuronectes flesus), in the brackish water Baltic sea. ICES J. Mar. Sci. 59, 93108 (2002).

Excerpt from:
Physiological responses of Atlantic cod to climate change indicate that coastal ecotypes may be better adapted to ... - Nature.com

Related Posts