Our research is enabling robust and scalable measurement of physiology. Cameras on everyday devices can be used to detect subtle changes in light reflected from the body caused by physiological processes. Machine learning algorithms are then used to process the camera images and recover the underlying pulse and respiration signals that can then be used for health and wellness tracking.
According to the CDC WONDER Online Database, heart disease is currently the leading cause of death for both men and women in the United States. However, most deaths due to cardiovascular diseases could be prevented with suitable interventions. Early detection of changes in health and well-being can have a significant impact on the success of these interventions and boost the chances of positive outcomes. Atrial fibrillation (AFib) is an example of a symptom that can indicate increased risk of heart disease, and when detected early, it can inform interventions that help to reduce risk of stroke.
Physiological sensing plays an important role in helping people track their health and detect the onset of symptoms. However, there are barriers to conducting physiological sensing that act as a disincentive, such as access to medical devices and the inconvenience of performing regular measurements. Making physiological sensing more accessible and less obtrusive can reduce the burden on people to perform physiological assessments of this kind and help catch early warning signs of symptoms like AFib.
Over the past decade, researchers have discovered that increasingly available webcams and cellphone cameras combined with AI algorithms can be used as effective health sensors. These methods involve measurement of very subtle changes in the appearance of the body across time, in many cases changes imperceptible to the unaided human eye, to recover physiological information. In essence, as ambient light in a room hits your body, some is absorbed and some is reflected. Physiological processes such as blood flow and breathing change the appearance of the body very subtly over time.
A smartphone camera can pick up this reflected light, and the changes in pixel intensities over time can be used to recover the underlying sources of these variations (namely a persons pulse and respiration). Using optical models grounded in our knowledge of these physiological processes, a video of a person can be processed to determine their pulse rate, respiration, and even the concentration of oxygen in their blood.
Building on previous work, our team of researchers from Microsoft Research, University of Washington, and OctoML have collaborated to create an innovative video-based on-device optical cardiopulmonary vital sign measurement approach. The approach uses everyday camera technology (such as webcams and mobile devices) and a novel convolutional attention network, called MTTS-CAN, to make real-time cardio-pulmonary measurements possible on mobile platforms with state-of-the-art accuracy. Our paper, Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement, has been accepted at the 34th Conference on Neural Information Processing Systems (NeurIPS 2020) and will be presented in a Spotlight talk on Monday, December 7th at 6:15PM- 6:30PM (PT).
Camera-based physiological sensing has numerous fitness, well-being and clinical applications. For everyday consumers, it could make home monitoring and fitness tracking more convenient. Imagine if your treadmill or smart at-home fitness equipment could continuously track your vitals during your run without you needing to wear a device or sync the data. In clinical contexts, camera-based measurements could enable a cardiologist to more objectively analyze a patients heart health over a video call. Contact sensors, necessary for monitoring vitals in intensive care, can damage the skin of infantsremote sensing could provide a more comfortable solution.
Perhaps the most obvious application for camera-based physiological sensing is in telehealth. The SARS-CoV-2 (COVID-19) pandemic is transforming the face of healthcare around the world. One example of this revolution can be seen in the number of medical appointments held via teleconference, which has increased by more than an order of magnitude because of stay-at-home orders and greater burdens on healthcare systems. This is due to the desire to protect healthcare workers and restrictions on travel, but telehealth also benefits patients by saving them time and costs. The Center for Disease Control and Prevention is recommending the use of telehealth strategies when feasible to provide high-quality patient care and reduce the risk of COVID-19 transmission in healthcare settings. The COVID-19 virus has been linked to increased risk of myocarditis and other serious cardiac (heart) conditions, and experts are suggesting that particular attention should be given to cardiovascular and pulmonary protection during treatment.
In most telehealth scenarios, however, physicians lack access to objective measurements of a patients condition because of the inability to capture signals such as the patients vital signs. This concerns many patients because they worry about the quality of the diagnosis and care they can receive without objective measurements. Ubiquitous sensing could help transform how telehealth is conducted, and it could also contribute to establishing telehealth as a mainstream form of healthcare.
It can take many years for new technologies such as these to transition from research discoveries to mature applications. The fields of AI and computer vision, as a whole, are six decades old, yet it is only in the past 10 years that many applications have started to reach fruition. Research on camera-based vital sign monitoring began much more recentlywithin the past 15 yearsso there is still a lot of effort required to help it reach maturity.
Contact sensors (electrocardiograms, oximeters) are the current gold standard for measurement of heart and lung function, yet these devices are still not ubiquitously available, especially in low-resource settings. The development of video-based contactless sensing of vital signs presents an opportunity for highly scalable physiological monitoring. Computer vision for remote cardiopulmonary measurement is a growing field, and there is room for improvement in the existing methods.
First, the accuracy of measurements is critical to avoid false alarms or misdiagnoses. The US Federal Drug Administration (FDA) mandates that testing of a new device for cardiac monitoring should show substantial equivalence in accuracy with a legal predicate device (for example, a contact sensor). This standard has not been obtained in non-contact approaches. Second, designing models that run on-device helps reduce the need for high-bandwidth internet connections, making telehealth more practical and accessible. Our method, detailed below, works to improve accuracy with a newly designed algorithm (see Figure 1) and runs on-device.
Camera-based cardiopulmonary measurement is also a highly privacy-sensitive application. This data is personally identifiable, combining videos of a patients face with sensitive physiological signals. Therefore, streaming and uploading data to the cloud to perform analysis is not ideal. This motivated our focus to develop methods that run on devicehelping keep peoples data under their control.
Finally, the ability to run at a high frame rate enables opportunistic sensing (for example, obtaining measurements each time you look at your phone) and helps capture waveform dynamics that could be used to detect atrial fibrillation, hypertension, and heart rate variability where high-frame rates (at least 100Hz) are a requirement to yield precise measurements of the waveform dynamics.
To help address the gaps in the current research, we developed an algorithm for multi-parameter physiological measurement that can run on a standard mid-range mobile phone, even at high frame rates. The method uses a type of deep learning algorithm called a convolutional neural network and analyzes pixels in a video over time to extract estimates of heart and respiration rates. The algorithm extracts two representations of the face: 1) the motion representation that contains the temporal changes pixel information and 2) the appearance representation that helps guide the network toward the spatial regions of the frame to focus on. Our specific design of this method is called a multi-task temporal shift convolutional attention network (MTTS-CAN). See Figure 2 below for details.
We introduced several features to help address the challenges of privacy, portability, and precision in contactless physiological measurement. Our end-to-end MTTS-CAN performs efficient temporal modeling and removes sources of noise without any added computational overhead by leveraging temporal shift operations rather than 3D convolutions, which are computationally onerous.
These shift operations allow the model to capture complex temporal dependencies, which are particularly important for recovering the subtle dynamics of the pulse and respiration signals. An attention module improves signal source separation by helping the model learn which regions of the video frame to apply greater importance to, and a multi-task mechanism shares the intermediate representations between pulse and respiration to jointly estimate both simultaneously.
Multi-task learning is effective for two reasons. First, the heart rhythms are correlated with breathing patterns meaning the two signals share some common propertiesthis is a principle known as Respiratory Sinus Arrhythmia (RSA). Second, by sharing many of the preliminary processing steps, we can dramatically reduce the computation required.
By combining these three techniques, our proposed network can run on a mobile CPU and achieve state-of-the-art accuracy and inference speed. Ultimately, these features result in significant improvements for gathering real physiological signals, like heart rate and pulse (see Figure 3).
One concern with optical measurement of vital signs is whether performance will work equally across people, including all skin types and appearances (for example, those with facial hair, wearing cosmetics, head coverings, or glasses). We have worked on characterizing these differences and helping to reduce them using personalization and data augmentation. Improving sensing technology to create equitable performance is a central focus to this research.
We hope that this work advances the speed at which scalable non-contact sensing can be adopted. Atrial fibrillation (AFib) is just one of most common cardiovascular symptoms that impact millions of people and could be better detected with more accurate, easily deployed non-contact health sensing systems. Our work is a step in this direction. Through our research we are continuing to develop methods for sensing other physiological parameters, such as blood oxygen saturation and pulse transit time.
If youre interested in learning more about our research in physiological sensing, there are a number of resources available. Our project page is a hub for publications and related content, including links to open-source code. We also recently gave a webinar on contactless camera-based health sensing that further elaborates on this work and dives deeper into how the technology works. Register now to watch the on-demand webinar/Q&A.
Excerpt from:
Utilizing consumer cameras for contact-free physiological measurement in telehealth and beyond - Microsoft
- SD-25117 PHD ON FOREST SOIL DROUGHT AND SOIL MICROBIAL PHYSIOLOGY AND CARBON PERSISTENCE - Nature.com - November 28th, 2024 [November 28th, 2024]
- Exploring the Effects of Masks on Skin Physiology - Dermatology Times - October 26th, 2024 [October 26th, 2024]
- Nobel Prize in Physiology or Medicine Awarded for Discovery of MicroRNA Gene Regulation - Scientific American - October 13th, 2024 [October 13th, 2024]
- Discovery in Tiny Worm Leads to Nobel Prize in Physiology or Medicine for 2 Scientists - The New York Times - October 13th, 2024 [October 13th, 2024]
- Nobel Prize in physiology or medicine awarded for discovery of microRNA - The Washington Post - October 13th, 2024 [October 13th, 2024]
- Victor Ambros 75, PhD 79 and Gary Ruvkun share Nobel Prize in Physiology or Medicine - MIT News - October 13th, 2024 [October 13th, 2024]
- The physiology of plants in the context of space exploration - Nature.com - October 13th, 2024 [October 13th, 2024]
- 2024 Nobel Prize in Physiology or Medicine: What is the research that won the prize? | Explained - The Hindu - October 13th, 2024 [October 13th, 2024]
- The discovery of microRNA wins the 2024 Nobel Prize in physiology - Science News Explores - October 13th, 2024 [October 13th, 2024]
- NSF congratulates laureates of the 2024 Nobel Prize in physiology or medicine - National Science Foundation (.gov) - October 13th, 2024 [October 13th, 2024]
- Polyamine impact on physiology of early stages of reef-building coralsinsights from rearing experiments and RNA-Seq analysis - Nature.com - October 13th, 2024 [October 13th, 2024]
- Nobel Prize in Physiology or Medicine: Who are Victor Ambros and Gary Ruvkun? - The Economic Times - October 13th, 2024 [October 13th, 2024]
- Nobel Prize in Physiology or Medicine awarded to 2 discoverers of microRNA - Fierce Biotech - October 13th, 2024 [October 13th, 2024]
- Victor Ambros and Gary Ruvkun Win the Nobel Prize in Physiology or Medicine 2024 - Technology Networks - October 13th, 2024 [October 13th, 2024]
- Johns Hopkins University vs. Stanford University: Which University Dominates in Anatomy & Physiology? - The Times of India - October 2nd, 2024 [October 2nd, 2024]
- Master of Science in Medical Physiology virtual information session - The Daily | Case Western Reserve University - October 2nd, 2024 [October 2nd, 2024]
- Stop saying lactic acid causes fatigue! says physiology expert in response to Games in Paris - Loughborough University - August 5th, 2024 [August 5th, 2024]
- Physiological responses of Atlantic cod to climate change indicate that coastal ecotypes may be better adapted to ... - Nature.com - June 9th, 2024 [June 9th, 2024]
- Parvalbumin interneuron mGlu5 receptors govern sex differences in prefrontal cortex physiology and binge drinking ... - Nature.com - May 24th, 2024 [May 24th, 2024]
- Pharmacology and Physiology Faculty Awarded Grants Totaling $1.5 million - Saint Louis University - May 12th, 2024 [May 12th, 2024]
- ESAFE - Postdoctoral Position in Molecular Plant Physiology job with MOHAMMED VI POLYTECHNIC UNIVERSITY ... - Times Higher Education - May 12th, 2024 [May 12th, 2024]
- Why psychology is as important as physiology for plastic surgery - The Times - May 12th, 2024 [May 12th, 2024]
- Lecturer in Clinical Exercise Physiology (Teaching Level A/B) job with UNIVERSITY OF SOUTH AUSTRALIA | 372763 - Times Higher Education - May 12th, 2024 [May 12th, 2024]
- Andrew Nuss: Insect physiology lab - University of Nevada, Reno - February 29th, 2024 [February 29th, 2024]
- Professor awarded prestigious honor for contributions to physiology - University of Miami: News@theU - February 29th, 2024 [February 29th, 2024]
- Study details five cutting-edge advances in biomedical engineering and their applications in medicine - EurekAlert - February 29th, 2024 [February 29th, 2024]
- Contextualizing Cellular Physiology - 2024 - NIDDK - National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) - February 29th, 2024 [February 29th, 2024]
- Salk Institute mourns the loss of Nobel Laureate Roger Guillemin, distinguished professor emeritus - Salk Institute - February 29th, 2024 [February 29th, 2024]
- Bacterial architects build the biofilm structures - Nature.com - February 13th, 2024 [February 13th, 2024]
- I'm a professor of physiology - here are 15 ways cyclists can avoid winter illness - CyclingWeekly - February 13th, 2024 [February 13th, 2024]
- Understanding how natural genetic variation contributes to adaptive responses to low oxygen - News-Medical.Net - February 13th, 2024 [February 13th, 2024]
- 'From slow visual feedback to real-time plant physiology' - Verticalfarmdaily.com: global indoor farming news - February 13th, 2024 [February 13th, 2024]
- The Future of Space Biology, Physiology, and Medicine: Exploring the Effects of Gravity on Human Cells - Medriva - February 13th, 2024 [February 13th, 2024]
- Master of Science in Medical Physiology program admissions open office hour - The Daily | Case Western Reserve University - January 19th, 2024 [January 19th, 2024]
- The Impact of GATAD2B Mutations on Brain Function and Development - Medriva - January 19th, 2024 [January 19th, 2024]
- Influence of Sleep-Disordered Breathing and Hypoxia on AF: A Pulmonary Physiological Perspective - Physician's Weekly - December 22nd, 2023 [December 22nd, 2023]
- MBRSC to host International Society for Gravitational Physiology meeting - BroadcastProME.com - December 22nd, 2023 [December 22nd, 2023]
- If anxiety is in my brain, why is my heart pounding? A psychiatrist explains the neuroscience and physiology of fear - PsyPost - December 22nd, 2023 [December 22nd, 2023]
- Renowned Researcher in Physiology to Chair UVA's Department of ... - UVA Health Newsroom - May 5th, 2023 [May 5th, 2023]
- Research Fellow (Aging and Cancer Stem Cell Laboratory ... - Times Higher Education - May 5th, 2023 [May 5th, 2023]
- Erratum. Integrated Physiology of the Exocrine and Endocrine ... - Diabetes Journal - May 5th, 2023 [May 5th, 2023]
- Survey on Value of Flight Nursing Certification Featured in New Air Medical Journal Research Article - Yahoo Finance - May 5th, 2023 [May 5th, 2023]
- Positive Relationships Can Keep You Healthy - Medscape - May 5th, 2023 [May 5th, 2023]
- Sex Doesn't Have to be a 'Taboo Thing' - Eagle News - May 5th, 2023 [May 5th, 2023]
- Kempf and Pakala honored by Boise State Foundation - Boise State University - May 5th, 2023 [May 5th, 2023]
- How AI Will Revolutionize Personalized Fitness and Nutrition Plans - MUO - MakeUseOf - May 5th, 2023 [May 5th, 2023]
- From the U.S. Navy to Atrium Health: A Nursing Journey - Atrium Health - May 5th, 2023 [May 5th, 2023]
- The Importance of PALS Certification for Healthcare Professionals - Eye On Annapolis - May 5th, 2023 [May 5th, 2023]
- LPU organized two-day International Conference on Plant ... - :: India News Calling :: - May 5th, 2023 [May 5th, 2023]
- Ancient human DNA was extracted from a 20,000-year-old deer ... - Science News Magazine - May 5th, 2023 [May 5th, 2023]
- New tusk-analysis techniques reveal surging testosterone in male ... - EurekAlert - May 5th, 2023 [May 5th, 2023]
- Effective Physio Care for Mild and Chronic Pain - Movement 101 ... - Digital Journal - May 5th, 2023 [May 5th, 2023]
- Real Madrid and Abbott inaugurate the Innovation Lab - Real Madrid - May 5th, 2023 [May 5th, 2023]
- Student Poster Presentation Winners Announced | Northern Today - Northern Today - May 5th, 2023 [May 5th, 2023]
- From Spiritual Journey to Physiological Phenomena: The ... - Pager Publications, Inc. - May 5th, 2023 [May 5th, 2023]
- How 'digital twins' will revolutionise health - Newsroom - May 5th, 2023 [May 5th, 2023]
- Conference on role of livestock in food security begins at SKUAST-K - Brighter Kashmir - May 5th, 2023 [May 5th, 2023]
- Roles of the gut microbiome in weight management - Nature.com - May 5th, 2023 [May 5th, 2023]
- Noted Science Scholar Stuart Dryer Earns 2023 Farfel Award - University of Houston - May 5th, 2023 [May 5th, 2023]
- Announcing Virtual Press Conference for the American Physiology Summit - Newswise - April 8th, 2023 [April 8th, 2023]
- 14 Ohio Indoor Track and Field Members Named Academic All-MAC ... - Ohio University Athletics - April 8th, 2023 [April 8th, 2023]
- Imagine a World Where You Control If and When You Go Through ... - Oprah Mag - April 8th, 2023 [April 8th, 2023]
- HeartFlow, Leader in Revolutionizing Precision Heart Care, Closes ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Board grants faculty appointments, promotions - The Source ... - Washington University in St. Louis - April 8th, 2023 [April 8th, 2023]
- The Productization of Translational Science, Upcoming Webinar ... - PR Web - April 8th, 2023 [April 8th, 2023]
- Suicide rate increases during the week of a full moon - Earth.com - April 8th, 2023 [April 8th, 2023]
- Innovative method predicts the effects of climate change on cold ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Research Staff Awards honor contributions to discovery | VUMC ... - VUMC Reporter - April 8th, 2023 [April 8th, 2023]
- Rady grad students shine at Three Minute Thesis final - UM Today - April 8th, 2023 [April 8th, 2023]
- The Physical and Mental Benefits of Stretching Regularly - Laughing Squid - April 8th, 2023 [April 8th, 2023]
- Olympic silver medalist calls for Nike boycott after retail giant makes Dylan Mulvaney paid ambassador - Fox News - April 8th, 2023 [April 8th, 2023]
- Ethylene transcriptionally regulates cold stress in grapevine leaves - Phys.org - April 8th, 2023 [April 8th, 2023]
- Middletown's Libretti inducted into Biology Honor Society at Scranton - themonmouthjournaleastern.com - April 8th, 2023 [April 8th, 2023]
- Physical therapist assistant students learn compassion as ... - Pennsylvania State University - April 8th, 2023 [April 8th, 2023]
- Risk of ICU Admission and Related Mortality in Patients... : Critical ... - LWW Journals - April 8th, 2023 [April 8th, 2023]
- Phi Beta Kappa Selects New Members at UW | News - University of Wyoming News - April 8th, 2023 [April 8th, 2023]
- National award honors UB biochemist's transformational leadership promoting inclusivity in science - UBNow: News and views for UB faculty and staff -... - October 12th, 2022 [October 12th, 2022]
- These are the real benefits of running, according to the science - Livescience.com - October 12th, 2022 [October 12th, 2022]
- Are Cold Showers Healthier Than Hot Ones? Science Is Weighing In! - Twisted Sifter - October 12th, 2022 [October 12th, 2022]
- Cardiovascular physiology-changes with aging - PubMed - October 3rd, 2022 [October 3rd, 2022]